十元环分子筛在甲醇芳构化反应中催化性能的研究

耿蕊 董梅 王浩 牛宪军 樊卫斌 王建国 秦张峰

引用本文: 耿蕊, 董梅, 王浩, 牛宪军, 樊卫斌, 王建国, 秦张峰. 十元环分子筛在甲醇芳构化反应中催化性能的研究[J]. 燃料化学学报, 2014, 42(9): 1119-1127. shu
Citation:  GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1119-1127. shu

十元环分子筛在甲醇芳构化反应中催化性能的研究

    通讯作者: 樊卫斌,E-mail:fanwb@sxicc.ac.cn;董梅,E-mail:mdong@sxicc.ac.cn;Tel:0351-4046736。; 樊卫斌,E-mail:fanwb@sxicc.ac.cn;董梅,E-mail:mdong@sxicc.ac.cn;Tel:0351-4046736。
  • 基金项目:

    国家自然科学基金(21103216,21273264,21273263) (21103216,21273264,21273263)

    国家重点基础研究发展规划(973计划,2011CB201403) (973计划,2011CB201403)

    山西省自然科学基金(2012011005-2)。 (2012011005-2)

摘要: 合成了ZSM-5、ZSM-22、EU-1、MCM-22和ITQ-13具有十元环孔道结构的5种分子筛,研究了分子筛结构、酸性分布等因素对其在甲醇芳构化反应中催化性能的影响。研究表明,不同结构分子筛的形貌、酸性及孔径均存在较大差异,进而影响了其在甲醇制芳烃反应中的催化活性和稳定性。研究的5种分子筛中,ZSM-5表现出最佳的芳构化活性,芳烃收率达34.8%,MCM-22芳烃收率约为21.9%,而其他3种结构的分子筛催化剂基本未表现出甲醇芳构化活性。通过添加具有芳构化性能的Ga物种对ZSM-5和MCM-22进行改性,可显著提升芳烃收率,Ga/ZSM-5上芳烃收率达到40.8%,Ga/MCM-22上芳烃收率可提高到27.1%。另外,采用TG/DTA、GC等方法研究了失活催化剂的积炭情况,发现分子筛结构对积炭量、积炭组成及积炭分布存在显著影响。

English

  • 
    1. [1] TRAVALLONI L, GOMES A C L, GASPAR A B, SILVA M A P. Methanol conversion over acid solid catalysts[J]. Catal Today, 2008, 133-135: 406-412.[1] TRAVALLONI L, GOMES A C L, GASPAR A B, SILVA M A P. Methanol conversion over acid solid catalysts[J]. Catal Today, 2008, 133-135: 406-412.

    2. [2] STÖCKER M. Methanol to hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 3-48.[2] STÖCKER M. Methanol to hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 3-48.

    3. [3] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol to hydrocarbon conversion process[J]. J Catal, 2010, 269(1): 219-228.[3] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol to hydrocarbon conversion process[J]. J Catal, 2010, 269(1): 219-228.

    4. [4] CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005, 106(1/4): 103-107.[4] CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005, 106(1/4): 103-107.

    5. [5] MOKRANI T, SCURRELL M. Gas conversion to liquid fuels and chemicals: The methanol route-catalysis and processes development[J]. Catal Rev, 2009, 51(1): 1-145.[5] MOKRANI T, SCURRELL M. Gas conversion to liquid fuels and chemicals: The methanol route-catalysis and processes development[J]. Catal Rev, 2009, 51(1): 1-145.

    6. [6] KUMAR R, RATNASWAMY P. Isomerization and formation of xylenes over ZSM-5 and ZSM-23 zeolites[J]. J Catal, 1989, 116(2): 440-448.[6] KUMAR R, RATNASWAMY P. Isomerization and formation of xylenes over ZSM-5 and ZSM-23 zeolites[J]. J Catal, 1989, 116(2): 440-448.

    7. [7] BRISCOE N A, JOHNSON D W, SHANNON M D. The framework topology of zeolite EU-1[J]. Zeolites, 1988, 8(1): 74-76.[7] BRISCOE N A, JOHNSON D W, SHANNON M D. The framework topology of zeolite EU-1[J]. Zeolites, 1988, 8(1): 74-76.

    8. [8] BOXI T, PUCHE M, CAMBLOR M A. Synthetic porous crystalline material, used as catalyst and adsorbent, comprises sets of generally parallel channels defined by specific rings of tetrahedrally coordinated atoms, which intersect mutually: US, 6471941. 2002.[8] BOXI T, PUCHE M, CAMBLOR M A. Synthetic porous crystalline material, used as catalyst and adsorbent, comprises sets of generally parallel channels defined by specific rings of tetrahedrally coordinated atoms, which intersect mutually: US, 6471941. 2002.

    9. [9] BAERLOCHER C H, MCCUSKER L B, OLSON D H. Atlas of zeolite framework types sixth revised edition[M]. Netherlands: Elsevier Science Ltd, 2007.[9] BAERLOCHER C H, MCCUSKER L B, OLSON D H. Atlas of zeolite framework types sixth revised edition[M]. Netherlands: Elsevier Science Ltd, 2007.

    10. [10] ROBSON H, LILLERUD K P. Verified synthesis of zeolitic materials[M]. Netherlands: Elsevier Science Ltd, 2001.[10] ROBSON H, LILLERUD K P. Verified synthesis of zeolitic materials[M]. Netherlands: Elsevier Science Ltd, 2001.

    11. [11] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5 分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1230-1239.)[11] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5 分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1230-1239.)

    12. [12] JOLY J F, AJOT H, MERLEN E, RAATZ F, ALARIO F. Parameters affecting the dispersion of the gallium phase of gallium H-MFI aromatization catalysts[J]. Appl Catal A: Gen, 1991, 79(2): 249-263.[12] JOLY J F, AJOT H, MERLEN E, RAATZ F, ALARIO F. Parameters affecting the dispersion of the gallium phase of gallium H-MFI aromatization catalysts[J]. Appl Catal A: Gen, 1991, 79(2): 249-263.

    13. [13] TEKETEL S. Shape selectivity in the conversion of methanol to hydrocarbons: The catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal, 2012, 2(1): 26-37.[13] TEKETEL S. Shape selectivity in the conversion of methanol to hydrocarbons: The catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal, 2012, 2(1): 26-37.

    14. [14] BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol to hydrocarbons reaction: Insight into the reaction mechanism from 12C benzene and 13C methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.[14] BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol to hydrocarbons reaction: Insight into the reaction mechanism from 12C benzene and 13C methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.

    15. [15] TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Microporous Mesoporous Mater, 2010, 136(1/3): 33-41.[15] TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Microporous Mesoporous Mater, 2010, 136(1/3): 33-41.

    16. [16] BEECKMAN J W, FROMENT G F. Catalyst deactivation by active site coverage and pore blockage[J]. Ind Eng Chem Fundam, 1979, 18(3): 245-256.[16] BEECKMAN J W, FROMENT G F. Catalyst deactivation by active site coverage and pore blockage[J]. Ind Eng Chem Fundam, 1979, 18(3): 245-256.

    17. [17] BEECKMAN J W, FROMENT G F. Catalyst deactivation by site coverage and pore blockage: Finite rate of growth of the carbonaceous deposit[J]. Chem Eng Sci, 1980, 35(4): 805-815.[17] BEECKMAN J W, FROMENT G F. Catalyst deactivation by site coverage and pore blockage: Finite rate of growth of the carbonaceous deposit[J]. Chem Eng Sci, 1980, 35(4): 805-815.

    18. [18] ROLLMANN L D, WALSH D E. Shape selectivity and carbon formation in zeolites[J]. J Catal, 1979, 56(1): 139-140.[18] ROLLMANN L D, WALSH D E. Shape selectivity and carbon formation in zeolites[J]. J Catal, 1979, 56(1): 139-140.

    19. [19] 刘中民, 陈国权, 王清遐, 梁娟, 蔡光宇. 分子筛催化剂的失活与积炭[J]. 催化学报, 1994, 15(4): 301-303. (LIU Zhong-min, CHEN Guo-quan, WANG Qing-xia, LIANG Juan, CAI Guang-yu. Deactivation and coke formation on zeolite catalysts[J]. Chinese Journal of Catalysis, 1994, 15(4): 301-303.)[19] 刘中民, 陈国权, 王清遐, 梁娟, 蔡光宇. 分子筛催化剂的失活与积炭[J]. 催化学报, 1994, 15(4): 301-303. (LIU Zhong-min, CHEN Guo-quan, WANG Qing-xia, LIANG Juan, CAI Guang-yu. Deactivation and coke formation on zeolite catalysts[J]. Chinese Journal of Catalysis, 1994, 15(4): 301-303.)

    20. [20] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.[20] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.

    21. [21] BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13(7): 2539-2549.[21] BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13(7): 2539-2549.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  962
  • HTML全文浏览量:  161
文章相关
  • 收稿日期:  2014-01-17
  • 网络出版日期:  2014-03-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章