Citation: DONG Guo-jun, ZHAO Yuan, ZHANG Yu-feng. Preparation and performance of V-W/x(Mn-Ce-Ti)/y(Cu-Ce-Ti)/cordierite catalyst by impregnation method in sequence for SCR reaction with urea[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1093-1101. shu

Preparation and performance of V-W/x(Mn-Ce-Ti)/y(Cu-Ce-Ti)/cordierite catalyst by impregnation method in sequence for SCR reaction with urea

  • Corresponding author: DONG Guo-jun, 
  • Received Date: 11 April 2014
    Available Online: 14 June 2014

    Fund Project: Supported by Fundamental Research Funds for the Central Universities (HEUCF20136910012) (HEUCF20136910012)

  • Mn-Ce/TiO2 (M) and Cu-Ce/TiO2 (C) were prepared by sol-gel method, and the cordierite honeycomb ceramics (CC) was coated with M and/or C and V2O5-WO3 in sequence by impregnation method. A series of monolith catalysts were evaluated for the selective catalytic reduction (SCR) of NOx by urea. The physical and chemical properties of the catalysts were well examined using nitrogen adsorption, CO2-TPD, NH3-TPD, XRD, XPS and H2-TPR experiments. The results showed that when the M phase was coated onto catalyst prior to C phase, the complex catalyst V/3C/3M/CC was more active than the catalysts with only M or C phase in the presence of 0.01% SO2 and 10% H2O, and a small quantity of SO2 may favor the urea-SCR activity. XRD analysis indicated that Cu, Ce modified TiO2 sol favors the formation of anatase phase, and Mn, Ce modified TiO2 sol facilitates the formation of rutile phase. The BET surface area of catalyst only has relationship with the amount of M or C phase, and loading sequence does not influence it so much. The introduction of M phase and C phase increases the surface acid sites of different intensity. H2-TPR results showed the interaction between vanadium and copper and/or manganese species enhances the reduction of vanadium, which can increase the amount of H2 consumption. XPS results indicated that both high V4+/V5+ ratio and large amount of surface chemisorbed oxygen may beneficial to the activity of the catalysts.
  • 加载中
    1. [1]

      [1] BOSCH H, JANSSEN F. Formation and control of nitrogen oxides[J]. Catal Today, 1988, 2(4): 369-379.

    2. [2]

      [2] BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36.

    3. [3]

      [3] FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Appl Catal A: Gen, 2001, 222(1/2): 221-236.

    4. [4]

      [4] BUSCA G, LARRUBIA M A, ARRIGHI L, RAMIS G. Catalytic abatement of NOx : Chemical and mechanistic aspects[J]. Catal Today, 2005, 107-108(30): 139-148.

    5. [5]

      [5] KOEBEL M, ELSENER M, KLEEMANN M. Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines[J]. Catal Today, 2000, 59(3/4): 335-345.

    6. [6]

      [6] LIETTI L, FORZATTI P, BREGANI F. Steady-state and transient reactivity study of TiOâ-supported VâOâ-WOâ De-NOâ catalysts: Relevance of the vanadium-tungsten interaction on the catalytic activity[J]. Ind Eng Chem Res, 1996, 35(11): 3884-3892.

    7. [7]

      [7] CHEN J P, YANG R T. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal A: Gen, 1992, 80(1/2): 135-148.

    8. [8]

      [8] THIRUPATHI B, SMIRNIOTIS P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J Catal, 2012, 288(1): 74-83.

    9. [9]

      [9] POURKHALIL M, MOGHADDAM A Z, RASHIDI A, TOWFIGHI J, MORTAZAVI Y. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3[J]. Appl Surf Sci, 2013, 279: 250-259.

    10. [10]

      [10] WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. J Mol Catal A: Chem, 2013, 376: 13-21.

    11. [11]

      [11] LEE S M, PARK K H, HONG S C. MnOx/CeO2-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chem Eng J, 2012, 195-196: 323-331.

    12. [12]

      [12] WANG X, ZHENG Y Y, LIN J X. Highly dispersed Mn-Ce mixed oxides supported on carbon nanotubes for low-temperature NO reduction with NH3[J]. Catal Commun, 2013, 37: 96-99.

    13. [13]

      [13] LI J F, YAN N Q, QU Z, QIAO S H, YANG S J, GUO Y F, LIU P, JIA J P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures[J]. Environ Sci Technol, 2010, 44(1): 426-431.

    14. [14]

      [14] PEÑA D A, UPHADE B, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431.

    15. [15]

      [15] TANG N, LIU Y, WANG H, WU Z. Mechanism study of NO catalytic oxidation over MnOx/TiO2 Catalysts[J]. J Phys Chem C, 2011, 115(16): 8214-8220.

    16. [16]

      [16] DU X S, GAO X, CUI L W, FU Y C, LUO Z Y, CEN K F. Investigation of the effect of Cu addition on the SO2-resistance of a Ce-Ti oxide catalyst for selective catalytic reduction of NO with NH3[J]. Fuel, 2012, 92(1): 49-55.

    17. [17]

      [17] WU Z B, JIN R B, WANG H Q, LIU Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun, 2009, 10: 935-939.

    18. [18]

      [18] JING Y, GAO X, WU W H. Effects of H2O and SO2 on the performance of V2O5/TiO2 catalysts for selective catalytic reduction of NO in flue gas[J]. Proc CSEE, 2013, 30: 28-33.

    19. [19]

      [19] VARGAS M A L, CASANOVA M, TROVARELLI A, BUSCA G. An IR study of thermally stable V2O5-WO3-TiO2. SCR catalysts modified with silica and rare-earths (Ce, Tb, Er)[J]. Appl Catal B: Environ, 2007, 75(3/4): 303-311.

    20. [20]

      [20] KRÖCHER O, ELSENER M. Combination of V2O5/WO3-TiO2, Fe-ZSM5, and Cu-ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia[J]. Ind Eng Chem Res, 2008, 47(22): 8588-8593.

    21. [21]

      [21] 黄妍, 童志权, 伍斌, 张俊丰. V2O5-CeO2/TiO2催化剂上低温氨选择性催化还原NO的性能[J]. 燃料化学学报, 2008, 36(5): 616-620. (HUANG Yan, TONG Zhi-quan, WU Bing, ZHANG Jun-feng. Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2[J]. Journal of Fuel Chemistry and Technology, 2008, 36(5): 616-620.)

    22. [22]

      [22] SUNG M H, CHOI I S, KIM J S, KIM W S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor[J]. Chem Eng Sci, 2000, 55(12): 2173-2184.

    23. [23]

      [23] 周超强, 董国君, 龚凡, 常雪. 铜锰复合低温NH3-SCR整体催化剂的制备及其性能研究[J]. 燃料化学学报, 2009, 37(5): 588-594. (ZHOU Chao-qiang, DONG Guo-jun, GONG Fan, CHANG Xue. Preparation and characterization of monolith catalysts loaded with copper and manganese for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 588-594.)

    24. [24]

      [24] WANG T J, BAEK S W, KWON H J, KIM Y J, NAM I S, CHA M S, YEO G K. Kinetic parameter estimation of a commercial Fe-zeolite SCR[J]. Ind Eng Chem Res, 2011, 50(5): 2850-2864.

    25. [25]

      [25] FORZATTI P, NOVA I, TRONCONI E. Enhanced NH3 selective catalytic reduction for NOx abatement[J]. Angew Chem Int Edit, 2009, 121(44): 8516-8518.

    26. [26]

      [26] ZHANG C P, ZHANG X L, WU X P, ZHANG L F, ZHANG H J, YANG B J. The mechanism of SO2 influence on the denitration of MnO2/PG catalysts at low temperature[J]. Acta Scientiae Circumstantiae, 2013, 33: 2686-2693.

    27. [27]

      [27] WAQUIF M, BACHELIER J, SAUR O, LAVALLEY J C. Acidic properities and stability of sulfate-promoted metal oxides[J]. J Mol Catal, 1992, 72(1): 127-138.

    28. [28]

      [28] CHEN J P, YANG R T. Selective catalytic reduction of NO with NH3 on SO42-/TiO2 superacid catalyst[J]. J Catal, 1993, 139(1): 277-288.

    29. [29]

      [29] SEO Y H, PRASETYANTO E A, JIANG N, OH S M, PARK S E. Catalytic dehydration of methanol over synthetic zeolite W[J]. Microporous Mesoporous Mater, 2010, 128(1/3): 108-114.

    30. [30]

      [30] CHMIELARZ L, KUSTROWSKI P, ZBROJA M, KNAP B G, DATKA J, DZIEMBAJ R. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co: Part Ⅱ. Temperature programmed studies[J]. Appl Catal B: Environ, 2004, 53(1): 47-61.

    31. [31]

      [31] CHMIELARA L, KUSTROWSKI P, ZBROJA M, ŁASOCHA W, DZIEMBAJ R. Selective reduction of NO with NH3?over pillared clays modified with transition metals[J]. Catal Today, 2004, 90(1/2): 43-49.

    32. [32]

      [32] PUTLURU S S R, RⅡSAGER A, FEHRMANN R. The Effect of acidic and redox properties of V2O5/CeO2-ZrO2 catalysts in selective catalytic reduction of NO by NH3[J]. Catal Lett, 2009, 133(3/4): 370-375.

    33. [33]

      [33] REICHE M A, MACIEJEWSKI M, BAIKER A. Effect of Al2O3 promoter on a performance of C1-C14 α -alcohols direct synthesis over Co/AC catalysts via Fischer-Tropsch synthesis[J]. Catal Today, 2000, 56(4): 347-355.

    34. [34]

      [34] BENNICI S, CARNITI P, GERVASINI A. Bulk and surface properties of dispersed CuO phases in relation with activity of NOx reduction[J]. Catal Lett, 2004, 98(4): 187-194.

    35. [35]

      [35] JEMAL J, TOUNSI H, DJEMEL S, PETTITO C, DELAHAY G. Characterization and deNOx activity of copper-hydroxyapatite catalysts prepared by wet impregnation[J]. Reac Kinet Mech Cat, 2013, 109(1): 159-165.

    36. [36]

      [36] WANG L, GAUDET J R, WEI L, WENG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013, 306: 68-77.

    37. [37]

      [37] CHOI S H, CHO S P, LEE JY, HONG S H, HONG S C, HONG S I. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature[J]. J Mol Catal A, 2009, 304(1/2): 166-173.

    38. [38]

      [38] LARACHI R, PIERRE J, ADNOT A, BERNIS A. Ce 3d XPS study of composite Cex Mn1-xO2-ywet oxidation catalysts[J]. Appl Surf Sci, 2002, 195(1/4): 236-250.

    39. [39]

      [39] CARJA G, KAMESHIMA Y, OKADA K, MADHUSOODANA C D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Appl Catal B: Environ, 2007, 73(1/2): 60-64.

    40. [40]

      [40] KANG M, PARK E D , KIM J M , YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269.

    41. [41]

      [41] PARK J H, PARK H J, BAIK J H, NAM I S, SHIN C H, LEE J H, CHO B K, OH S H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal, 2006, 240(1): 47-57.

    42. [42]

      [42] KWAK J H, TOMKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010, 275(2): 187-190.

    43. [43]

      [43] FICKEL D W, ADDIO E D, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B: Environ, 2011, 102(3/4): 441-448.

    44. [44]

      [44] KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2005, 60(3/4): 173-179.

    45. [45]

      [45] LZARO M J, BOYANO A, HERRERA C, LARRUBIA M A, ALEMANY L J, MOLINER R. Vanadium loaded carbon-based monoliths for the on-board No reduction: Influence of vanadia and tungsten loadings[J]. Chem Eng J, 2009, 155(1/2): 68-75.

  • 加载中
    1. [1]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    5. [5]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    10. [10]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return