Citation: LIN Xing-yi, ZHANG Yong, YIN Ling. Effect of various precipitants on activity and thermal stability of CuFe2O4 water-gas shift catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1087-1092. shu

Effect of various precipitants on activity and thermal stability of CuFe2O4 water-gas shift catalysts

  • Corresponding author: LIN Xing-yi, 
  • Received Date: 21 May 2014
    Available Online: 18 July 2014

    Fund Project:

  • Three kinds of CuFe2O4 catalysts were synthesized by co-precipitation method using potassium hydroxide (A), sodium carbonate (B) and sodium bicarbonate (C) as the precipitants. Their catalytic activity and thermal stability were evaluated in water-gas shift reaction (WGSR). The microstructure and surface property of as-prepared catalysts was investigated by X-ray diffraction (XRD), N2-physisorption, H2-temperature programmed reduction (H2-TPR), CO2-temperature programmed desorption (CO2-TPD) and cyclic voltammetry (CV). The results show that the catalyst prepared with potassium hydroxide as precipitant exhibits excellent WGSR activity. Potassium hydroxide plays an important role in promoting the generation of CuFe2O4, restraining growth of crystalline CuO and CuFe2O4, resulting in much better dispersion of CuO on the surface of catalysts, enhancing the reducibility of catalysts, and increasing the amount of weak basic sites. These factors remarkably improve the activity and thermal stability of catalysts.
  • 加载中
    1. [1]

      [1] MIDILLI A, AY M, DINCER I, ROSEN M A. On hydrogen and hydrogen energy strategies: I: Current status and needs[J]. Renew Sust Energ Rev, 2005, 9(3): 255-271.

    2. [2]

      [2] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renew Sust Energy Rev, 2002, 6(5): 433-455.

    3. [3]

      [3] SPIVEY J J. Catalysis in the development of clean energy technologies[J]. Catal Today, 2005, 100(1/2): 171-180.

    4. [4]

      [4] MARO O M, SÁNCHEZ J M, RUIZ E. Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe-Cr water gas shift catalyst[J]. Int J Hydrogen Energy, 2010, 35(1): 37-45.

    5. [5]

      [5] TANAKA Y, UTAKA T, KIKUCHI R, SASAKI K, EGUCHI K. CO removal from reformed fuel over Cu/ZnO/Al2O3 catalysts prepared by impregnation and coprecipitation methods[J]. Appl Catal A: Gen, 2003, 238(1): 11-18.

    6. [6]

      [6] LI L, ZHAN Y Y, ZHENG Q. Water-gas shift reaction over aluminum promoted Cu/CeO2 nanocatalysts characterized by XRD, BET, TPR and cyclic voltammetry(CV)[J]. Catal Lett, 2007, 118(1/2): 91-97.

    7. [7]

      [7] NISHIDA K, LI D, ZHAN Y, SHISHIDO T, OUMI Y, SANO T. Effective MgO surface doping of Cu/Zn/Al oxides as water-gas shift catalysts[J]. Appl Clay Sci, 2009, 44(3/4): 211-217.

    8. [8]

      [8] ATAKE I, NISHIDA K, LI D, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction[J]. J Mol Catal A: Chem, 2007, 275(1/2): 130-138.

    9. [9]

      [9] LI L, ZHAN Y Y, ZHENG Q, ZHENG Y, CHEN C Q, SHE Y S, LIN X Y, WEI K M. Water-gas shift reaction over CuO/CeO2 catalysts: Effect of the thermal stability and oxygen vacancies of CeO2 supports previously prepared by different methods[J]. Catal Lett, 2009, 130(3/4): 532-540.

    10. [10]

      [10] LI L, SONG L, WANG H, CHEN C Q, SHE Y S, ZHAN Y Y. Water-gas shift reaction over CuO/CeO2 catalysts: Effect of CeO2 supports previously prepared by precipitation with different precipitants[J]. Int J Hydrogen Energy, 2011, 36(15): 8839-8849.

    11. [11]

      [11] FAUNGNAWAKIJ K, SHIMODA N, FUKUNAGA T, KIKUCHI R, EGUCHI K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J]. Appl Catal B: Environ, 2009, 92(3/4): 341-350.

    12. [12]

      [12] ESTRELLA M, BARRIO L, ZHOU G, WANG X, HANSON JC, FRENKEL A I. In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts[J]. J Phys Chem C, 2009, 113(32): 14411-14417.

    13. [13]

      [13] SEVERINO F, BRITO J L, LAINE J, FIERRO J L G, AGUDO A L. Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts[J]. J Catal, 1998, 177(1): 82-95.

    14. [14]

      [14] SHANGGUAN W, TERAOKA Y, KAGAWA S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides[J]. Appl Catal B: Environ, 1996, 8(2): 217-227.

    15. [15]

      [15] TSAI A, YOSHIMURA M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol[J]. Appl Catal A: Gen, 2001, 214(2): 237-241.

    16. [16]

      [16] YANG S C, SU W N, LIN S D, RICK J, CHENG J H, LIU J Y. Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications[J]. Appl Catal B: Environ, 2011, 106(3/4): 650-656.

    17. [17]

      [17] KAMEOKA S, TANABE T, TSAI A P. Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4[J]. Appl Catal A: Gen, 2010, 375(1): 163-171.

    18. [18]

      [18] HUA J M, WEI K M, ZHENG Q, LING X Y. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water gas shift reaction[J]. Appl Catal A: Gen, 2004, 259(1): 121-130.

    19. [19]

      [19] SAGATA K, IMAZU N, YAHIRO H. Study on factors controlling catalytic activity for low-temperature water-gas-shift reaction on Cu-based catalysts[J]. Catal Today, 2013, 201(1): 145-150.

    20. [20]

      [20] KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.

    21. [21]

      [21] NISHIDA K, ATAKE I, LI D, SHISHIDO T, OUMI Y, SANO T. Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting "memory effect" of hydrotalcite[J]. Appl Catal A: Gen, 2008, 337(1): 48-57.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return