Citation: JIA Wei-hua, HU Xiu-de, LIU Yong-zhuo, YANG Ming-ming, GUO Qing-jie. Reactivity of Ca-Fe/bentonite oxygen carrier in coal chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1060-1067. shu

Reactivity of Ca-Fe/bentonite oxygen carrier in coal chemical-looping combustion

  • Corresponding author: GUO Qing-jie, 
  • Received Date: 13 February 2014
    Available Online: 4 June 2014

    Fund Project: 国家自然科学基金(21276129,20876079) (21276129,20876079)韩国能源研究所资助(B3-2421-06)。 (B3-2421-06)

  • A Ca-based compound oxygen carrier was prepared with industrial grade natural anhydrite, bentonite (ben) and iron nitrates by using the mechanical mixing-prilling method. The experiments were carried out in a fluidized bed with steam as the gasification-fluidization medium. The influence of active component content, temperature as well as multi-cycle on the reactivity between CaSO4/bentonite and coal was investigated. The results show that the CaSO4 mass content of 60% and the adding Fe2O3 can make a better reactivity and less attrition of the oxygen carrier particles. The attrition rate is 0.089%/h. The time to reach a carbon conversion of 95% is shortened to 20.8 min, and the average dry concentration of CO2 approaches 95.99%. Ten redox tests demonstrate that the concentration of CO2 can be kept in 80% and the CaSO4-Fe2O3/ben (Ca-Fe/ben) oxygen carrier has a good cyclic stability. Moreover, four types of coal are tested, indicating that the coals with high volatile content and high ash content have higher combustion efficiencies with above 90% CO2 concentration in gasification products in all cases.
  • 加载中
    1. [1]

      [1] ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DE DIEGO L F. Progress in chemical-looping combustion and reforming technologies[J]. Progress Energy Combust Sci, 2012, 38(2): 215-282.

    2. [2]

      [2] 曾亮, 罗四维, 李繁星, 范良士. 化学链技术及其在化石能源转化与二氧化碳捕集领域的应用[J]. 中国科学: 化学, 2012, 42(3): 260-281. (ZENG Liang, LUO Si-wei, LI Fan-xing, FAN Liang-shi. Chemical looping technology and its applications in fossil fuel conversion and CO2 capture. SCIENTIA SINICA Chimica, 2012, 42(3): 260-281.)

    3. [3]

      [3] LYNGFELT A. Oxygen carriers for chemical looping combustion-4000 h of operational experience[J]. Oil Gas Sci Technol–Rev IFP Energies nouvelles, 2011, 66(2): 161-172.

    4. [4]

      [4] 程煜, 刘永卓, 田红景, 郭庆杰. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. (CHENG Yu, LIU Yong-zhuo, TIAN Hong-jing, GUO Qing-jie. Chemical-looping gasification reaction characteristics and mechanism of coal and fe-based composite oxygen carriers[J]. CIESC Journal, 2013, 64(7): 2587-2595.)

    5. [5]

      [5] GUO Q J, ZHANG J S, TIAN H J. Recent advances in CaSO4 oxygen carrier for Chemical-Looping Combustion (CLC) process[J]. Chem Eng Commun, 2012, 199(11): 1463-1491.

    6. [6]

      [6] JUKKOLA G, LILJEDAHL G, NSAKALA NY, MORIN J X, ANDRUS H. An ALSTOM vision of future CFB technology based power plant concepts. Proceedings of the 18th International Conference on Fluidized Bed Combustion, 2005.

    7. [7]

      [7] ZHENG M, SHEN L, XIAO J. Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion: Effects of temperature and gasification intermediate[J]. Int J Greenh Gas Control, 2010, 4(5): 716-728.

    8. [8]

      [8] LIU Y Z, GUO Q J, CHENG YU, HO-JUNG RYU. Reaction mechanism of coal chemical looping process for syngas production with CaSO4 oxygen carrier in the CO2 atmosphere[J]. Ind Eng Chem Res, 2012, 51(31): 10364-10373.

    9. [9]

      [9] SOHN H Y, KIM B S. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants: 1 Determination of process feasibility [J]. Ind Eng Chem Res, 2002, 41(13): 3081-3086.

    10. [10]

      [10] 丁宁, 郑瑛, 罗聪, 吴琪珑, 傅培舫, 郑楚光. 化学链燃烧中CaSO4复合载氧体的实验研究[J]. 燃料化学学报, 2011, 39(3): 161-168. (DING Ning, ZHENG Ying, LUO Cong, WU Qi-long, FU Pei-fang, ZHENG Chu-guang. Investigation into compound CaSO4 oxygen carrier for chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 161-168.)

    11. [11]

      [11] SONG T, ZHENG M, SHEN L, ZHANG T, NIU X, XIAO J. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal[J]. Ind Eng Chem Res, 2013, 52(11): 4059-4071.

    12. [12]

      [12] 郭庆杰, 田红景, 刘永卓. CaSO4的复合载氧体制备及其反应特性[J]. 太原理工大学学报, 2010, 41(5): 572-576. (GUO Qing-jie, TIAN Hong-jing, LIU Yong-zhuo. Preparation and reactivity behavior of compound CaSO4 oxygen carrier[J]. Journal of Taiyuan University of Technology, 2010, 41(5): 572-576.)

    13. [13]

      [13] 郑敏, 沈来宏, 冯晓琼. CaO加入条件下煤与CaSO4氧载体化学链燃烧的反应性能研究[J]. 燃料化学学报, 2014, 42(4): 399-407. (ZHENG Min, SHEN Lai-hong, FENG Xiao-qiong. Study on chemical-looping combustion of coal with CaSO4 oxygen carrier assisted by CaO addition[J]. Journal of Fuel Chemistry and Technology, 2014, 42(4): 399-407.)

    14. [14]

      [14] 郗艳荣, 刘永卓, 田红景, 郭庆杰. 规模化制备钙基复合载氧体的性能研究[J]. 高校化工学报, 2014, 28(1): 51-58. (XI Yan-rong, LIU Yong-zhuo, TIAN Hong-jing, GUO Qing-jie. Performance of Ca-based compound oxygen carrier prepared by large scale approach [J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(1): 51-58.)

    15. [15]

      [15] LIU S, LEE D, LIU M, LI L, YAN R. Selection and application of binders for CaSO4 oxygen carrier in chemical-looping combustion[J]. Energy Fuels, 2010, 24(12): 6675-6681.

    16. [16]

      [16] TIAN H J, GUO Q J. Thermodynamic investigation into carbon deposition and sulfur evolution in Ca-based chemical-looping combustion system[J]. Chem Eng Res Des, 2011, 89(9): 1524-1532.

    17. [17]

      [17] SCOTT S A, DENNIS J S, HAYHURST A N, BROWN T. In situ gasification of a solid fuel and CO2 separation using chemical looping[J]. AIChE J, 2006, 52(9): 3325-3328.

    18. [18]

      [18] ASTM D5757-00, Standard test method for determination of attrition and abrasion of powdered catalysts by air jets[S].

    19. [19]

      [19] FROHN P, ARJMAND M, AZIMI G, LEION H, MATTISSON T, LYNGFELT A. On the high gasification rate of brazilian manganese ore in Chemical-Looping Combustion (CLC) for solid fuels[J]. AIChE J, 2013, 59(11): 4346-4354.

    20. [20]

      [20] LEION H, MATTISSON T, LYNGFELT A. The use of petroleum coke as fuel in chemical looping combustion[J]. Fuel, 2007, 86(12/13): 1947-1958.

    21. [21]

      [21] 王保文, 晏蓉, 郑瑛, 赵海波, 郑楚光. CaSO4氧载体煤基合成气化学链燃烧模拟研究[J]. 燃料化学学报, 2011, 39(4): 251-257. (WANG Bao-wen, YAN Rong, ZHENG Ying, ZHAO Hai-bo, ZHENG Chu-guang. Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 251-257.)

    22. [22]

      [22] 高正平, 沈来宏, 肖军, 郑敏, 吴家桦. 煤化学链燃烧Fe2O3载氧体的反应性研究[J]. 燃料化学学报, 2009, 37(5): 513-520. (GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, ZHENG Min, WU Jia-hua. Analysis of reactivity of Fe-based oxygen carrier with coal during Chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 513-520.)

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    4. [4]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    16. [16]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    17. [17]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(0)
  • Abstract views(952)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return