Citation: YAN Qi-xuan, WANG Jian-fei, HUANG Jie-jie, ZHAO Jian-tao, FANG Yi-tian. Effect of H2 on coal-char gasification reaction with steam under pressure[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1033-1039. shu

Effect of H2 on coal-char gasification reaction with steam under pressure

  • Corresponding author: HUANG Jie-jie, 
  • Received Date: 3 March 2014
    Available Online: 27 April 2014

    Fund Project: 中国科学院战略性先导科技专项(XDA07050100)。 (XDA07050100)

  • The gasification characteristics of Huolinhe lignite char (HLH char), SM bituminous coal char (SM char) and Jincheng anthracite char (JC char) with the mixtures of steam and H2 at elevated pressures were investigated in a pressurized fixed bed differential (PFBD) reactor. The results show that the inhibition of H2 on the coal-char gasification with steam is remarkable, and the intensity of the inhibition increases with increasing H2 partial pressure, total pressure and coal rank, respectively; while it decreases with increasing temperature. Coal-char gasification with steam or steam/H2 can be described by the same kinetic model, and the final carbon conversion of coal-char gasification with steam/H2 is lower than that with steam. The inhibition mechanism is related to the H2 partial pressure. When H2 partial pressure is low, H atom dissociated from H2 molecule occupies the active point on the coal-char surface directly; while when the H2 partial pressure is high, the irreversible reaction of oxygen-exchange reaction is strengthened.
  • 加载中
    1. [1]

      [1] MOILANEN A, MⅡHLEN H J. Characterization of gasification reactivity of peat char in pressurized conditions: Effect of product gas inhibition and inorganic material[J]. Fuel, 1996, 75(11): 1279-1285.

    2. [2]

      [2] MⅡHLEN H J, VAN HEEK K H, JⅡNTGEN H. Kinetic studies of steam gasification of char in the presence of H2, CO, and CO2[J]. Fuel, 1985, 64: 944-949.

    3. [3]

      [3] JUNTGEN H. Reactivities of carbon to steam and hydrogen and applications to technical gasification processes-a review[J]. Carbon, 1981, 19(3): 167-173.

    4. [4]

      [4] FUSHIMI C, WADA T, TSUTSUMI A. Inhibition of steam gasification of biomass char by hydrogen and tar[J]. Biomass Bioenergy, 2011, 35(1): 179-185.

    5. [5]

      [5] 杨帆, 周志杰, 刘海峰, 龚欣, 王辅臣. 氢气存在下煤焦水蒸气气化: 1反应性的研究[J]. 燃料化学学报, 2009, 37(1): 36-41. (YANG Fan, ZHOU Zhi-jie, LIU Hai-feng, GONG Xin, WANG Fu-cheng. Coal char gasification with steam and H2: I The gasification reaction characteristics[J]. Journal of Fuel Chemistry and Technology, 2009, 37(1): 36-41.)

    6. [6]

      [6] WHITTY K, HUPA M, FREDERICK W J. Gasification of black liquor char with steam at elevated pressures[J]. J Pulp Paper Sci, 1995, 21(6): 214-221.

    7. [7]

      [7] SCHNIAL M, LUIZ J, MONTERO F. Kinetics of coal gasification[J]. Ind Eng Chem Proc Des Dev, 1982, 21(2): 256-266.

    8. [8]

      [8] BHATIA S K, PERLMUTTER D D. A random pore model for fluid-solid reactions: I. Isothermal kinetics control[J]. AIChE J, 1980, 26(3): 379-386.

    9. [9]

      [9] TANAKA S, U-EMURA T, ISHIZAKI K. CO2 gasification of iron-loaded carbons: Activation of the iron catalyst with CO[J]. Energy Fuels, 1995, 9(1): 45-52.

    10. [10]

      [10] CHEN C, WANG J, LIU W, ZHANG S, YIN J S, LUO G Q, YAO H. Effect of pyrolysis conditions on the char gasification with mixtures of CO2 and H2O[J]. Proc Combust Inst, 2013, 34: 2453-2460.

    11. [11]

      [11] ERGUN S, MENTSER M. In chemistry and physics of carbon[M]. Chemistry and Physics of Carbon, 1965: 203-261.

    12. [12]

      [12] GADSBY J, HINSHELWOOD C N, SYKES K W. The kinetics of the reactions of the steam-carbon system[J]. Proc Roy Sot, 1946, 187(1009): 129-151.

    13. [13]

      [13] LONG F J, SYKES K W. The mechanism of the steam-carbon reaction[J]. Proc Roy Sot, 1948, 193(1034): 377-399.

    14. [14]

      [14] HVTTINGER K J, MERDES W F. The carbon-steam reaction at elevated pressure: Formations of product gases and hydrogen inhibitions[J]. Carbon, 1992, 30(6): 883-894.

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    10. [10]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    15. [15]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    16. [16]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    19. [19]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(489)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return