Citation: HUSEYIN Sozen, WEI Guo-qiang, LI Hai-bin, HE Fang, HUANG Zhen. Chemical-looping gasification of biomass in a 10 kWth interconnected fluidized bed reactor using Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 922-931. shu

Chemical-looping gasification of biomass in a 10 kWth interconnected fluidized bed reactor using Fe2O3/Al2O3 oxygen carrier

  • Corresponding author: LI Hai-bin, 
  • Received Date: 11 April 2014
    Available Online: 30 May 2014

    Fund Project: Supported by the National Natural Science Foundation of China (51076154) (51076154) National Key Technology Research & Development Program of 12 th Five-year of China (2011BAD15B05). (2011BAD15B05)

  • The aim of this research is to design and operate a 10 kW hot chemical-looping gasification (CLG) unit using Fe2O3/Al2O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃ reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.
  • 加载中
    1. [1]

      [1] RODHE H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248(4960): 1217-1219.

    2. [2]

      [2] MATTISSON T, GARCÍA-LABIANO F, KRONBERGER B, LYNGFELT A, ADÁNEZ J, HOFBAUER H. Chemical-looping combustion using syngas as fuel[J]. Int J Greenh Gas Con, 2007, 1(2): 158-169.

    3. [3]

      [3] MATTISSON T, LYNGFELT A, CHO P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2[J]. Fuel, 2001, 80(13): 1953-1962.

    4. [4]

      [4] JOHANSSON M, MATTISSON T, LYNGFELT A, ABAD A. Using continuous and pulse experiments to compare two promising nickel-based oxygen carriers for use in chemical-looping technologies[J]. Fuel, 2008, 87(6): 988-1001.

    5. [5]

      [5] RYDEN M, LYNGFELT A, MATTISSON T. Chemical-looping combustion and chemical looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers[J]. Energy Fuels, 2008, 22(4): 2585-2597.

    6. [6]

      [6] MATTISSON T, JARDNAS A, LYNGFELT A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion[J]. Energy Fuels, 2003, 17(3): 643-651.

    7. [7]

      [7] BEATRIZ M. CORBELL A, PALACIOS J M. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane[J]. Fuel, 2007, 86(1/2): 113-122.

    8. [8]

      [8] LYNGFELT A, LECKNER B, MATTISSON T. A fuidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chem Eng Sci, 2001, 56(10): 3101-3113.

    9. [9]

      [9] CHUANG S Y, DENNIS J S, HAYHURST A N, SCOTT S A. Development and performance of Cu-based oxygen carriers for chemical-looping combustion[J]. Combust Flame, 2008, 154(1/2): 109-121.

    10. [10]

      [10] XUA G W, MURAKAMIA T, SUDA T, MATSUZAW Y, TANI H. Two-stage dual fluidized bed gasification: Its conception and application to biomass[J]. Fuel Process Technol, 2009, 90: 137-144.

    11. [11]

      [11] SHEN L H, WU J H, XIAO J. Chemical-looping combustion of biomass in a 10 kW(th) reactor with iron oxide As an oxygen carrie[J]. Energy Fuels, 2009, 23(5): 2498-2505.

    12. [12]

      [12] ZHANG Y A, XIAO J, SHEN L H. Simulation of methanol production from biomass gasification in interconnected fluidized beds[J]. Ind Eng Chem Res, 2009, 48(11): 5351-5359.

    13. [13]

      [13] ACHARYA B, DUTTA A, BASU P. Chemical-looping gasification of biomass for hydrogen-enriched gas production with in-process carbon dioxide capture[J]. Energy Fuels, 2009, 23(10): 5077-5083.

    14. [14]

      [14] XIE Y R, XIAO J, SHEN L H, WANG J, ZHU J, HAO J G. Effects of Ca-based catalysts on biomass gasification with steam in a circulating spout-fluid bed reactor[J]. Energy Fuels, 2010, 24(5): 3256-3261.

    15. [15]

      [15] LI F X, ZENG L, FAN L S. Biomass direct chemical looping process: Process simulation[J]. Fuel, 2010, 89(12): 3773-3784.

    16. [16]

      [16] GNANAPRAGASAM N V, REDDY B V, ROSEN M A. Opportunities for low-grade coals and biomass for producing hydrogen using iron oxide-based direct chemical looping combustion with effective CO2 separation[J]. Open Renew Energy J, 2010, 3: 12-25.

    17. [17]

      [17] GU H M, SHEN L H, XIAO J, ZHANG S W, SONG T. Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor[J]. Energy Fuels, 2011, 25: 446-455.

    18. [18]

      [18] VIRGINIE M, ADANEZ J, COURSON C, DEDIEGO L F, GARCIA-LABIANO F, NIZNANSKY D, KIENNEMANN A, GAYAN P, ABAD A. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Appl Catal B: Environ, 2012, 121-122(13): 214-222.

    19. [19]

      [19] SONG T, WU J H, SHEN L H, XIAO J. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds[J]. Biomass Bioenergy, 2012, 36: 258-267.

    20. [20]

      [20] MENDIARA T, ABAD A, DEDIEGO L F, GARCIA-LABINO F, GAYAN P, ADANEZ J. Biomass combustion in a CLC system using an iron ore asan oxygen carrier[J]. Int J Greenh Gas Con, 2013, 19: 322-330.

    21. [21]

      [21] GU H M, SONG G H, XIAO J, ZHAO H, SHEN L H. Thermodynamic analysis of the biomass-to-synthetic natural gas using chemical looping technology with CaO sorbent[J]. Energy Fuels, 2013, 27(8): 4695-4704.

    22. [22]

      [22] GOYAL, H B, SEAL D, SAXENA R C. Bio-fuels from thermo chemical conversion of renewable resources: A review[J]. Renew Sus Energy Rev, 2008, 12(2): 504-517.

    23. [23]

      [23] ABAD A, ADANEZ J, GARCIA-LABIANO F, DEDIEGO L, GAYAN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci, 2007, 62(1/2): 533-549.

    24. [24]

      [24] GAO N B, LI A, QUAN C. A novel reforming method for hydrogen production from biomass steam gasification[J]. Bioresour Technol, 2009, 100(18): 4271-4277.

  • 加载中
    1. [1]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    4. [4]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    8. [8]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    9. [9]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    18. [18]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    19. [19]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(452)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return