Citation: LÜ Dong-can, LIU Yun-quan, WANG Duo, YE Yue-yuan. Preparation of liquid hydrocarbon fuels from polyols via one-step redox process[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 820-826. shu

Preparation of liquid hydrocarbon fuels from polyols via one-step redox process

  • Corresponding author: LIU Yun-quan, 
  • Received Date: 4 April 2014
    Available Online: 19 May 2014

    Fund Project: 国家自然科学基金(21276214) (21276214)国家重点研究基础研究发展规划(973计划,2012CB215306)。 (973计划,2012CB215306)

  • Sorbitol and xylitol were used as raw materials for the preparation of heavier hydrocarbons by reduction with hydriodic acid under mild reaction conditions. The generated liquid hydrocarbons were analyzed by gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR). Their physicochemical properties were further characterized. The heavier hydrocarbons obtained from sorbitol mainly include C12H16, C12H18, C12H20, C12H22 and C18H26, with a yield of 85.1%. In contrast, that prepared from xylitol were mainly composed of C10 and C15 hydrocarbons with a yield of 62.8%. When using a mixture of sorbitol/xylitol (50:50) as feedstock, C11 hydrocarbons were also generated besides C10,C12,C15 and C18 hydrocarbons. The yield of total heavier hydrocarbons was 65.4%. To get purer liquid hydrocarbons, the obtained raw product was treated with potassium hydroxide in an ethyl alcohol solution, followed by rotary evaporation and vacuum distillation, and a liquid hydrocarbon fuel contains less than 0.2% of water and 1.8%~2.1% of oxygen was generated. Its kinematic viscosity is 3.15~ 3.17 mm2/s, density 0.83~ 0.84 g/mL, and calorific value greater than 43 MJ/kg at room temperature. The umpolung of the C-I bond and the intermolecular C-C coupling may result in the formation of heavier hydrocarbons from polyols.
  • 加载中
    1. [1]

      [1] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading [J]. Biomass Bioenergy, 2012, 38: 68-94.

    2. [2]

      [2] 张怡, 陈登宇, 张栋, 朱锡锋. 生物油 TG-FTIR 分析与热解气化特性研究[J]. 燃料化学学报, 2012, 40(10): 1194-1199. (ZhANG Yi, CHEN Deng-yu, ZHANG Dong, ZHU Xi-feng. TG-FTIR analysis of bio-oil and its pyrolysis/gasification property[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1194-1199.)

    3. [3]

      [3] 王文亮, 虞宇翔, 常建民, 白甜甜. 两种树皮热解微晶结构及生物油组分对比[J]. 燃料化学学报, 2013, 41(11): 1310-1315. (WANG Wen-liang, YU Yu-xiang, CHANG Jian-min, BAI Tian-tian. Comparative analysis of micro-crystal structures and bio-oils from pyrolysis of two barks[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1310-1315.)

    4. [4]

      [4] VISPUTE T P, ZHANG H, SANNA A, XIAO R, HUBER G W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6008): 1222-1227.

    5. [5]

      [5] BULUSHEV D A, ROSS J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review[J]. Catal Today, 2011, 171(1): 1-13.

    6. [6]

      [6] 李凯, 郑燕, 龙潭, 朱锡锋. 利用Py-GC/MS 研究温度和时间对生物质热解的影响[J]. 燃料化学学报, 2013, 41(7): 845-849. (LI Kai, ZHENG Yan, LONG Tan, ZHU Xi-feng. Study on effect of temperature and time on biomass pyrolysis by Py-GC/MS [J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 845-849.)

    7. [7]

      [7] BRETHAUER S, WYMAN C E. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production[J]. Bioresour Technol, 2010, 101(13): 4862-4874.

    8. [8]

      [8] ZHU J Y, PAN X J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation[J]. Bioresour Technol, 2010, 101(13): 4992-5002.

    9. [9]

      [9] CHEN J, WANG S, HUANG J, CHEN L, MA L, HUANG X. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid[J]. ChemSusChem, 2013, 6(8): 1545-1555.

    10. [10]

      [10] LUO C, WANG S, LIU H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew Chem Int Edit, 2007, 46(40): 7636-7639.

    11. [11]

      [11] 沈宜泓, 王帅, 罗琛, 刘海超. 生物质利用新途径: 多元醇催化合成可再生燃料和化学品[J]. 化学进展, 2007, 19(2): 431-436. (SHEN Yi-hong, WANG Shuai, LUO Shen, LIU Hai-chao. Biomass-derived polyols as new bio-platform molecules for sustainable production of fuels and chemicals[J]. Progress in Chemistry, 2007, 19(2): 431-436.)

    12. [12]

      [12] HUBER G W, CORTRIGHT R D, DUMESIC J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J]. Angew Chem Int Edit, 2004, 43(12): 1549-1551.

    13. [13]

      [13] HUBER G W, CHHEDA J N, BARRETT C B, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-2079.

    14. [14]

      [14] CHHEDA J N, HUBER G W, DUMESIC J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angew Chem Int Edit, 2007, 46(38): 7164-7183.

    15. [15]

      [15] KUNKES E L, SIMONETTI D A, WEST R M, SERRANO-RUIZ J, GRTNER C A, DUMESIC J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421.

    16. [16]

      [16] ROBINSON J M, BURGESS C E, MANDAL H D, BRASHER C D, O'HARA K, HOLLAND P. Unique fractionation of biomass to polyols provides inexpensive feedstock for liquid fuels process[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 1996, 41: 1090-1093.

    17. [17]

      [17] ROBINSON J M. Process for producing hydrocarbon fuels: US, 5516960. 1996-5-14.

    18. [18]

      [18] ROBINSON J M. Coupled electrochemical method for reduction of polyols to hydrocarbons: US, 7915470. 2011-3-29.

    19. [19]

      [19] ROBINSON J M, BANUELOS E, BARBER W C, BURGESS C E, CHAU C, CHESSER A A, GARRETT M H, GOODWIN C H, HOLLAND P L, HORNE B O, MARRUFO L D, MECHALKE E J, RASHIDI J R, REYNOLDS B D, ROGERS T E, SANCHEZ E H, VILLARREAL J S. Chemical conversion of biomass polysaccharides to liquid hydrocarbon fuels and chemicals[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 1999, 44(2): 224-227.

    20. [20]

      [20] 邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学[M]. 第三版. 北京: 高等教育出版社, 2005. (XING Qi-yi, PEI Wei-wei, XU Rui-qiu, PEI Jian. Basic organic chemistry[M]. 3rd ed. Beijing: Higher Education Press, 2005.)

    21. [21]

      [21] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuel, 2004, 18(2): 590-598.

    22. [22]

      [22] DEMIRBAS A, FATIH DEMIRBAS M. Importance of algae oil as a source of biodiesel[J]. Energy Convers Manage, 2011, 52(1): 163-170.

    23. [23]

      [23] MITCHELL H K, WILLIAMS R J. A study of reduction with hydriodic acid: Use in micro determinations of hydroxyl groups[J]. J Am Chem Soc, 1938, 60(11): 2723-2726.

    24. [24]

      [24] SEEBACH D. Methods of reactivity umpolung[J]. Angew Chem Int Edit, 1979, 18(4): 239-258.

    25. [25]

      [25] IGARASHI T, TAYAMA E, IWAMOTO H, HASEGAWA E. Carbon-carbon bond formation via benzoyl umpolung attained by photoinduced electron-transfer with benzimidazolines[J]. Tetrahedron Lett, 2013, 54(50): 6874-6877.

  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return