Citation: CAO Xiao-ling, ZHANG Hang, DENG Sheng-xiang, TANG Shi-bin, XIONG Jia-jia, LUO Hai-yin, CAO Kong-bin. Theoretical study on gasification of β-1 type lignin dimer with high temperature steam[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 813-819. shu

Theoretical study on gasification of β-1 type lignin dimer with high temperature steam

  • Corresponding author: ZHANG Hang, 
  • Received Date: 2 December 2013
    Available Online: 14 February 2014

    Fund Project: 国家自然科学基金(51276023)。 (51276023)

  • The density functional theory B3LYP/6-31G(d,p) was used to study the reaction mechanism of β-1 type lignin dimer gasification with high temperature steam based on quantum chemistry. The results show that the enthalpies of R4 and R5 in the beginning of reaction of lignin model compound with high temperature steam, are 243.9 kJ/mol and 323.2 kJ/mol, respectively. These values mean that Cα-Cβ bond and Cβ-C1 bond are easy to break. By the calculation, R4-1 and R5-1 reaction barriers are 4.4 kJ/mol and 24.0 kJ/mol, respectively. Thus it is of priority to choose the R4-1 and R5-1 paths in the gasification process. Products via the reaction path calculation include ethanol, methanol, phenol hydroxy toluene and p-hydroxybenzaldehyde, which agree with the experimental results.
  • 加载中
    1. [1]

      [1] 宋卫东, 方彤, 王乾坤, 周原冰. 2009年《世界能源展望》要点综述[J]. 能源技术经济, 2010, 22(1): 18-22. (SONG Wei-dong, FANG Tong, WANG Qian-kun, ZHOU Yuan-bin. The points of "The 2009 World Energy Outlook"[J]. Energy Technology and Economy, 2010, 22(1): 18-22.)

    2. [2]

      [2] CARLOS L. High-temperature air/steam gasification of biomass in an updraft fixed bed batch type gasifier. Stockholm: Royal Institute of Technology, 2005.

    3. [3]

      [3] YANG W, PONZIO A, LUCAS C, BLASIAK W. Performance analysis of a fixed-bed biomass gasifier using high temperature air[J]. Fuel Process Technol, 2006, 87(3): 235-245.

    4. [4]

      [4] YOUNG L P, PIAN C C. High-temperature air blown gasification of dairy-farm wastes for energy production[J]. Energy, 2003, 28(7): 655-672.

    5. [5]

      [5] GANG D R, COSTA M A, FUJITAL M, ALBENA T D K, WANG H B, BYRLAT V, MART W, SARKANEN S, DAVINL L B, LEWIS N G. Regiochemical control of monolignol radical coupling: A now paradigm for lignin and lignin biosynthesis[J]. Chem Biol, 1999, 6(3): 143-151.

    6. [6]

      [6] RAMONA D, YANG W, BLASIAK W. Wood pellets combustion with rich and diluted air in HTAC furnace. Report for EU-Suspower Projiect, November, 2006.

    7. [7]

      [7] BRITT P F, BUCHANAN A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J].J Org Chem, 2000, 65(5): 1376-1389.

    8. [8]

      [8] 刘江燕. 木质素及其模型物在不同热化学环境下的解构. 广州: 华南理工大学, 2010. (LIU Jiang-yan. Deconstruction of lignin and lignin model under different thermochemical environments. Guangzhou: South China University of Technology, 2010.)

    9. [9]

      [9] 王惠, 杨海峰, 瞿高红, 文振翼, 冉新权, 史启桢, 罗瑞盈, 杨延清. 碳源甲基苯热裂解机理的密度泛函动力学研究[J]. 化学学报, 2001, 59(1): 17-21. (WANG Hui, YANG Hai-feng, QU Gao-hong, WEN Zhen-yi, RAN Xin-quan, SHI Qi-zhen, LUO Rui-ying, YANG Yan-qing. DFT kinetic study of the pyrolysis mechanism of toluene used for carbon[J]. Acta Chimica Sinica, 2001, 59(1): 17-21.)

    10. [10]

      [10] BICOUT D, FIELD M. Quantum mechanical simulation method for studing biological system[M]. Berlin: Springer Berlin Heidelberg, 1995: 1-21.

    11. [11]

      [11] 王华静, 赵岩, 王晨, 傅尧, 郭庆祥. 木质素二聚体模型物裂解历程的理论研究[J]. 化学学报, 2009, 67(9): 893-900. (WANG Hua-jing, ZHAO Yan, WANG Chen, FU Yao, GUO Qing-xiang. Theoretical study on the pyrolysis process of lignin dimer model compounds[J]. Acta Chimica Sinica, 2009, 67(9): 893-900.)

    12. [12]

      [12] 刘倩. 基于组分的生物质热裂解机理研究. 杭州: 浙江大学, 2009. (LIU Qian. Biomass pyrolysis based on the multi-components. Huangzhou: Zhejiang University, 2009.)

    13. [13]

      [13] 江德正, 刘朝, 魏顺安, 黄金保. 纤维素热解过程的分子动力学模拟[J]. 工程热物理学报, 2009, 30(12): 1986-1900. (JIANG De-zheng, LIU Chao, WEI Shun-an, HUANG Jing-bao. Simulation of molecular dynamics in cellulose pyrolysis[J]. Journal of Enginering Thermophysics, 2009, 30(12): 1986-1900.)

    14. [14]

      [14] 黄金保. 纤维素快速热解机理的分子模拟研究. 重庆: 重庆大学, 2010. (HUANG Jin-bao. Molecular simulation study of pyrolysis mechanism of cellulose. Chongqing:Chongqing University, 2010.)

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return