Citation: ZHOU Yan, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, PAN Chun-xiu. A kinetic study on the liquefaction of Shenfu coal catalyzed by Ni-Mo-S/Al2O3[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 785-791. shu

A kinetic study on the liquefaction of Shenfu coal catalyzed by Ni-Mo-S/Al2O3

  • Corresponding author: SHUI Heng-fu, 
  • Received Date: 4 April 2014
    Available Online: 23 May 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201302) (973计划,2011CB201302)国家自然科学基金(U1261208,21176001,51174254,21306001) (U1261208,21176001,51174254,21306001)科技部中日国际合作项目(2013DFG60060)。 (2013DFG60060)

  • A kinetic model for Shenfu (SF) coal liquefaction catalyzed by Ni-Mo-S/Al2O3 was built by using lumped kinetic method, where the liquefaction products were fractioned by solvents. The model has considered the mutual transformations among coal, preasphaltene (PA), asphaltene (AS) and oil in the process, in which a series of consecutive, parallel, regressive and coking reactions were integrated. The results showed that the process of SF coal liquefaction catalyzed by Ni-Mo-S/Al2O3 can be well simulated by the model; based on this kinetic model, the activation energy of SF coal liquefaction is 125~244 kJ/mol. There exist obviously regressive reactions of oil and gas to AS and AS to PA at high liquefaction temperature. Moreover, the coking reactions of AS and PA to coke may take place when the liquefaction temperature exceeds 420℃.
  • 加载中
    1. [1]

      [1] MOHAN G, SILLA H. Kinetics of donor-solvent liquefaction of bituminous coals in nonisothermal experiments[J]. Ind Eng Chem Process Des Dev, 1981, 20(2): 349-356.

    2. [2]

      [2] WELLER S. Kinetics of coal hydrogenation conversion of asphaltene[J]. Ind Eng Chem, 1951, 43(7): 1575-1579.

    3. [3]

      [3] CRONAUER D C, SHAH Y T, RUBERTO R G. Kinetics of thermal liquefaction of belleayr subbituminous coal[J]. Ind Eng Chem Process Des Dev, 1978, 17(3): 281-288.

    4. [4]

      [4] DING W, LIANG J, ANDERSON L L. Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvent[J]. Ind Eng Chem Res, 1997, 36(5): 1444-1452.

    5. [5]

      [5] SIMSEK E H, KARADUMAN A, OLCAY A. Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy[J]. Fuel, 2001, 80(15): 2181-2188.

    6. [6]

      [6] LI X, HU H Q, ZHU S W, HU S X, WU B, MENG M. Kinetics of coal liquefaction during heating-up and isothermal stages[J]. Fuel, 2008, 87(4/5): 508-513.

    7. [7]

      [7] SHUI H F, CHEN Z X, WANG Z C, ZHANG D X. Kinetics of Shenhua coal liquefication catalyzed by SO42-/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.

    8. [8]

      [8] CEYHUN I. Kinetic studies on Karlova coal[J]. Theor Found Chem Eng, 2003, 37(4): 416-420.

    9. [9]

      [9] PRAKASH K R, ARTHUR R T. Kinetic model development for single-stage coal coprocessing with petroleum waste[J]. Fuel Process Technol, 1997, 51(1): 83-100.

    10. [10]

      [10] SHALABI M A, BALDWIN, R M, BAIN R L, GARY I H, GOLDEN I O. Non-catalytic coal liquefaction in a donor solvent. Rate of formation of oil, asphaltenes, and preasphaltenes[J]. Coal Process Technol, 1978, 18(3): 474-478.

    11. [11]

      [11] GERGINA A, DIMITAR K, NEDIALKA D. Kinetics of donor-solvent liquefaction of Bulgarian brown coal[J]. Fuel, 1989, 68(11): 1434-1438.

    12. [12]

      [12] SUZUKI T, ANDO T, WATANABE Y. Kinetic studies on the hydroliquefaction of coals using organometallic complexes[J]. Energy Fuels, 1987, 1(3): 294-300.

    13. [13]

      [13] XU B, KANDIYOTI R. Two-stage kinetic model of primary coal liquefaction[J]. Energy Fuels, 1996, 10(5): 1115-1122.

    14. [14]

      [14] GERTENBACH D D, BALDWIN R M, BAIN R L. Modeling of bench-scale coal liquefaction systems[J]. Ind Eng Chem Process Des Dev, 1982, 21(3): 490-500.

  • 加载中
    1. [1]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(0)
  • Abstract views(404)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return