Citation:
Sharon Rose de la Rama, Hiroshi Yamada, Tomohiko Tagawa. Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(5): 573-581.
-
The effect of oxidation pretreatment temperature (500~1 000 ℃) on the catalytic activity of Kovar applied on hydrocarbon CO2 reforming was examined. Catalytic performance evaluation using tetradecane at 800 ℃ with 70 μmol/s CO2 revealed 700 and 1 000 ℃ as the best pre-oxidation temperature in producing CO and H2, respectively. XRD and SEM-EDX analyses showed that a separate metal oxide layer composed of iron oxide (Fe2O3 and F3O4), nickel, cobalt, and possibly their respective oxides started to form when oxidation was conducted at 700 ℃ or higher.The presence of iron enhanced the stability of nickel in the structure while the compact structure of Fe3O4 resulted into the formation of a thick and rigid metal oxide layer on the surface of the Kovar tube. The strong physical bond between the metal oxide layer and Kovar tube provided the catalyst good mechanical strength and consequently good catalytic activity.
-
Keywords:
- CO2 reforming catalyst,
- Kovar,
- oxidation pretreatment
-
-
-
[1]
[1] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B: Environ, 2005, 60(1/2): 107-116.
-
[2]
[2] NGUYEN D L, LEROI P, LEDOUX M J, PHAM-HUU C. Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/β-SiC catalyst[J]. Catal Today, 2009, 141: 393-396.
-
[3]
[3] JIANG H T, HUA W, JI J B. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5): 859-868.
-
[4]
[4] BUDIMAN A W, SONG S H. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development[J]. Catal Surv Asia, 2012, 16: 183-197.
-
[5]
[5] TAKANO A, TAGAWA T, GOTO S. Carbon dioxide reforming of methane on supported nickel catalysts[J]. J Chem Eng Jpn, 1994, 27(6): 727-731.
-
[6]
[6] FIERRO J L G, PEA M A. Supported metals in the production of hydrogen. Supported metals in catalysis[M]. London: Imperial College Press, 2004: 229-282.
-
[7]
[7] FERREIRA-APARICIO P, GUERRERO-RUIZ A, RODRIGUEZ-RAMOS I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide silica and alumina supported catalysts[J]. Appl Catal A: Gen, 1998, 170(1): 177-187.
-
[8]
[8] DJINOVIC P, CRNIVEC G O, ERJAVEC B, PINTAR A. Exceptional performance of novel Ni and Co bimetallic catalysts in methane dry reforming process[C]//Proceedings of the 9th World Congress of Chemical Engineering. South Korea, 2013: 184.
-
[9]
[9] ROSTRUP-NIELSEN J, TRIMM D. Mechanisms of carbon formation on nickel-containing catalysts[J]. J Catal, 1977, 48(1/3): 155-165.
-
[10]
[10] COURSON C, MAKAGA E, PETIT C, KIENNEMANN A. Development of Ni catalysts for gas production from bimass gasification. Reactivity in steam-and dry-reforming[J]. Catal Today, 2000, 63(2/4): 427-437.
-
[11]
[11] GADALLA A, BOWER B. The role of catalysts support on the activity of nickel for reforming methane with CO2[J]. Chem Eng Sci, 1988, 43(11): 3049-3062.
-
[12]
[12] DE LA RAMA S R, KAWAI S, YAMADA H, TAGAWA T. Preliminary evaluation of surface oxidized Kovar as CO2 reforming catalyst[R]. An Oral Presentation Conducted at the Chemical Engineering Society of Japan 78th Annual Meeting. Osaka, Japan, 2013.
-
[13]
[13] SOLYMOSI F, TOLMACSOV P, ZAKAR T S. Dry reforming of propane over supported Re catalyst[J]. J Catal, 2005, 233(1): 51-59.
-
[14]
[14] LUO D W, SHEN Z S. Oxidation behavior of Kovar alloy in controlled atmosphere[J]. Acta Metall Sinica (English Letters), 2008, 21(6): 409-418.
-
[15]
[15] OSOJNIK CRNIVEC I G, DJINOVIC P, ERJAVEC B, PINTAR A. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chem Eng J, 2012, 207-208: 299-307.
-
[16]
[16] CHIKAMATSU N, TAGAWA T, GOTO S. Characterization of a new mixed oxide catalyst derived from hydrogen storage alloy[J]. J Mater Sci, 1995, 30(5): 1367-1372.
-
[17]
[17] DE LIMA S M, ASSAF J M. Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas[J]. Catal Lett, 2006, 108(1/2): 63-70.
-
[18]
[18] PROVENDIER H, PETIT C, ESTOURNES C, LIBS S, KIENNEMANN A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition[J]. Appl Catal A: Gen, 1999, 180(1/2): 163-173.
-
[1]
-
-
-
[1]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[2]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[3]
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
-
[4]
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
-
[5]
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
-
[6]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[7]
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
-
[8]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[9]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[10]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[11]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[12]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[13]
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
-
[14]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[15]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[16]
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
-
[17]
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[19]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[20]
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(324)
- HTML views(10)