Citation: Sharon Rose de la Rama, Hiroshi Yamada, Tomohiko Tagawa. Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 573-581. shu

Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst

  • Corresponding author: Sharon Rose de la Rama, 
  • Received Date: 7 March 2014
    Available Online: 21 March 2014

    Fund Project: Supported by a research grant (K2106) from the Ministry of Environment of Japan. (K2106)

  • The effect of oxidation pretreatment temperature (500~1 000 ℃) on the catalytic activity of Kovar applied on hydrocarbon CO2 reforming was examined. Catalytic performance evaluation using tetradecane at 800 ℃ with 70 μmol/s CO2 revealed 700 and 1 000 ℃ as the best pre-oxidation temperature in producing CO and H2, respectively. XRD and SEM-EDX analyses showed that a separate metal oxide layer composed of iron oxide (Fe2O3 and F3O4), nickel, cobalt, and possibly their respective oxides started to form when oxidation was conducted at 700 ℃ or higher.The presence of iron enhanced the stability of nickel in the structure while the compact structure of Fe3O4 resulted into the formation of a thick and rigid metal oxide layer on the surface of the Kovar tube. The strong physical bond between the metal oxide layer and Kovar tube provided the catalyst good mechanical strength and consequently good catalytic activity.
  • 加载中
    1. [1]

      [1] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B: Environ, 2005, 60(1/2): 107-116.

    2. [2]

      [2] NGUYEN D L, LEROI P, LEDOUX M J, PHAM-HUU C. Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/β-SiC catalyst[J]. Catal Today, 2009, 141: 393-396.

    3. [3]

      [3] JIANG H T, HUA W, JI J B. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5): 859-868.

    4. [4]

      [4] BUDIMAN A W, SONG S H. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development[J]. Catal Surv Asia, 2012, 16: 183-197.

    5. [5]

      [5] TAKANO A, TAGAWA T, GOTO S. Carbon dioxide reforming of methane on supported nickel catalysts[J]. J Chem Eng Jpn, 1994, 27(6): 727-731.

    6. [6]

      [6] FIERRO J L G, PEA M A. Supported metals in the production of hydrogen. Supported metals in catalysis[M]. London: Imperial College Press, 2004: 229-282.

    7. [7]

      [7] FERREIRA-APARICIO P, GUERRERO-RUIZ A, RODRIGUEZ-RAMOS I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide silica and alumina supported catalysts[J]. Appl Catal A: Gen, 1998, 170(1): 177-187.

    8. [8]

      [8] DJINOVIC P, CRNIVEC G O, ERJAVEC B, PINTAR A. Exceptional performance of novel Ni and Co bimetallic catalysts in methane dry reforming process[C]//Proceedings of the 9th World Congress of Chemical Engineering. South Korea, 2013: 184.

    9. [9]

      [9] ROSTRUP-NIELSEN J, TRIMM D. Mechanisms of carbon formation on nickel-containing catalysts[J]. J Catal, 1977, 48(1/3): 155-165.

    10. [10]

      [10] COURSON C, MAKAGA E, PETIT C, KIENNEMANN A. Development of Ni catalysts for gas production from bimass gasification. Reactivity in steam-and dry-reforming[J]. Catal Today, 2000, 63(2/4): 427-437.

    11. [11]

      [11] GADALLA A, BOWER B. The role of catalysts support on the activity of nickel for reforming methane with CO2[J]. Chem Eng Sci, 1988, 43(11): 3049-3062.

    12. [12]

      [12] DE LA RAMA S R, KAWAI S, YAMADA H, TAGAWA T. Preliminary evaluation of surface oxidized Kovar as CO2 reforming catalyst[R]. An Oral Presentation Conducted at the Chemical Engineering Society of Japan 78th Annual Meeting. Osaka, Japan, 2013.

    13. [13]

      [13] SOLYMOSI F, TOLMACSOV P, ZAKAR T S. Dry reforming of propane over supported Re catalyst[J]. J Catal, 2005, 233(1): 51-59.

    14. [14]

      [14] LUO D W, SHEN Z S. Oxidation behavior of Kovar alloy in controlled atmosphere[J]. Acta Metall Sinica (English Letters), 2008, 21(6): 409-418.

    15. [15]

      [15] OSOJNIK CRNIVEC I G, DJINOVIC P, ERJAVEC B, PINTAR A. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chem Eng J, 2012, 207-208: 299-307.

    16. [16]

      [16] CHIKAMATSU N, TAGAWA T, GOTO S. Characterization of a new mixed oxide catalyst derived from hydrogen storage alloy[J]. J Mater Sci, 1995, 30(5): 1367-1372.

    17. [17]

      [17] DE LIMA S M, ASSAF J M. Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas[J]. Catal Lett, 2006, 108(1/2): 63-70.

    18. [18]

      [18] PROVENDIER H, PETIT C, ESTOURNES C, LIBS S, KIENNEMANN A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition[J]. Appl Catal A: Gen, 1999, 180(1/2): 163-173.

  • 加载中
    1. [1]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    2. [2]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    3. [3]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    4. [4]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    5. [5]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    6. [6]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    7. [7]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    8. [8]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    9. [9]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    14. [14]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    15. [15]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    16. [16]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    17. [17]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

Metrics
  • PDF Downloads(0)
  • Abstract views(324)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return