Citation: HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong, TAKARADA Takayuki. Preparation of HyperCoal-based activated carbons for electric double layer capacitor[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 539-544. shu

Preparation of HyperCoal-based activated carbons for electric double layer capacitor

  • Received Date: 26 November 2013
    Available Online: 15 February 2014

    Fund Project: 国家自然科学基金(21206189,21306224) (21206189,21306224)中日战略合作项目(2013DFG60060) (2013DFG60060)中国矿业大学青年科技基金(2012QNA18)。 (2012QNA18)

  • Coal-based activated carbons (ACs) were prepared from HyperCoal using KOH and CaCO3 as activating agent, and were used as electrode materials for electric double layer capacitor (EDLC) using 0.5 mol/L TEABF4/PC as the electrolytic solution. The porosity of the ACs was characterized using N2 adsorption at 77 K. The effects of carbonization temperature, activation temperature, activation time and activating agent on the capacitance characteristic of ACs were investigated. The results show that the specific surface area and the specific capacitance decreased with the increase of carbonization temperature. A high activation temperature and a long activation time is not beneficial for the specific capacitance of EDLC. CaCO3 significantly inhibited the porosity development during KOH activation and gave ACs with quite low specific surface area and specific capacitance. The ACs prepared at carbonization temperature of 500 ℃, activation temperature of 800 ℃, KOH/char ratio of 4 and activation time of 2 h reached a specific surface area of 2 540 m2/g and a total pore volume of 1.65 cm3/g and achieved the maximum specific capacitance of 46.0 F/g.
  • 加载中
    1. [1]

      [1] ELMOUWAHIDI A, ZAPATA-BENABITHE Z, CARRASCO-MÍN F, CARRASCO-MARIF, MORENO-CASTILLA C. Activated carbons from KOH-activation of argan(argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresour Technol, 2012, 111: 185-190.

    2. [2]

      [2] 朱光真, 邓先伦, 孙 康. 电容器电极用新型炭材料的研究进展[J]. 生物质化学工程, 2009, 43(5): 42-48. (ZHU Guang-zhen, DENG Xian-lun, SUN Kang. Research progress on carbon materials as electrode of Capacitor[J]. Biomass Chemical Engineering, 2009, 43(5): 42-48.)

    3. [3]

      [3] INAGAKI M, KONNOA H, TANAIKE O. Carbon materials for electrochemical capacitors[J]. J Power Sources, 2010, 195(24): 7880-7903.

    4. [4]

      [4] HU C C, WANG C C, WU F C, TSENG R L. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors[J]. Electrochim Acta, 2007, 52(7): 2498-2505.

    5. [5]

      [5] 邢宝林, 张传祥, 谌伦建. 双电层电容器用煤基活性炭的制备与电化学性能表征[J]. 材料导报: 研究篇, 2009, 23(11): 106-109. (XING Bao-lin, ZHANG Chuan-xiang, CHEN Lun-jian. Preparation and electrochemical performance of coal-based activated carbons for electric double layer capacitor[J]. Materials Science: Research papers, 2009, 23(11): 106-109.)

    6. [6]

      [6] 何月德, 刘洪波, 张红波. 煤基活性炭用作双电层电容器电极材料[J]. 电源技术, 2003, 27(3): 311-314. (HE Yue-de, LIU Hong-bo, ZHANG Hong-bo. Coal-based activated carbon with high specific surface areas the electrode materials for electric double layer capacitor[J]. Power Technology, 2003, 27(3): 311-314.)

    7. [7]

      [7] QIAO W M, YOON S H, MOCHIDA I. KOH activation of needle coke to develop activated carbons for high-performance EDLC[J]. Energy Fuels, 2006, 20(4): 1680-1684.

    8. [8]

      [8] LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275.

    9. [9]

      [9] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8/10): 947-967.

    10. [10]

      [10] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy Fuels, 2002, 16(4): 1006-1007.

    11. [11]

      [11] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of HyperCoals from coals of various ranks[J]. Fuel, 2008, 87(4/5): 592-598.

    12. [12]

      [12] KOYANO K, TAKANOHASHI T, SAITO I. Catalytic hydrogenation of HyperCoal(ashless coal) and reusability of catalyst[J]. Energy Fuels, 2009, 23(7): 3652-3657.

    13. [13]

      [13] SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.

    14. [14]

      [14] ZHAO X Y, CAO J P, SATO K, OGAWA Y, TAKARADA T. High surface area activated carbon prepared from black liquor in the presence of high alkali metal content[J]. J Chem Eng Jpn, 2010, 43(12): 1029-1034.

    15. [15]

      [15] XU B, WU F, SU Y F, CAO G P, CHEN S, ZHOU Z M, YANG Y S. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity[J]. Electrochim Acta, 2008, 53(26): 7730-7735.

    16. [16]

      [16] WANG M X, WANG C Y, CHEN M M, WANG Y S, SHI Z Q, DU X, LI T Q, HU Z J. Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches[J]. New Carbon Mater, 2010, 25(4): 285-290.

    17. [17]

      [17] HE X J, GENG Y J, QIU J S, ZHENG M D, LONG S, ZHANG X Y. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48(5): 1662-1669.

    18. [18]

      [18] DU X, GUO P, SONG H H, CHEN X H. Graphene nanosheets as electrode material for electric double-layer capacitor[J]. Electrochim Acta, 2010, 55(16): 4812-4819.

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    7. [7]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    11. [11]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    17. [17]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    18. [18]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    19. [19]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(0)
  • Abstract views(502)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return