Citation: YUE Chuan-jun, WANG Ji-xiang, CAO Gui-ping, LIU Bao-liang. Study on the Cu-P system with water for hydrogen production[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 507-512. shu

Study on the Cu-P system with water for hydrogen production

  • Corresponding author: YUE Chuan-jun, 
  • Received Date: 17 October 2013
    Available Online: 29 December 2013

    Fund Project: 江苏省自然科学基金(BK2011235)。 (BK2011235)

  • Hydrogen production was studied in the Cu-P oxidation-reduction system with water. The influence of Cu /P ratio, reaction temperature, acidity and additional Cu on hydrogen yield was investigated. The green process of Cu-P system was realized by the design of the copper recycling and the phosphorus transformation and utilization. The results showed the hydrogen yield from the hydrogen atom in the reaction was mainly dependent on the Cu/P ratio and the reaction temperature, with the optimal yield of 18.6 mL under the conditions of 95 ℃ and 0.05 mol ratio of Cu to P with 0.20 g CuSO4·5H2O. H2O2 oxidation of elemental Cu in Cu-P system was also achieved for 10 times recycling under acidic condition. FT-IR and XRD results revealed that H2PO3-from the hydrogen production process could be converted into the new antirust CaHPO3·H2O with Ca(OH)2.
  • 加载中
    1. [1]

      [1] DINCER I. Environmental and sustainability aspects of hydrogen and fuel cell systems[J]. Int J Hydrogen Energy, 2007, 31(1): 29-55.

    2. [2]

      [2] TUMER J, SVERDRUP G, MANN M K, MANESS P C, KROPOSKI B, GHIRARDI M, EVANS R J, BLAKE D. Renewable hydrogen production[J]. Int J Energy Res, 2008, 32(5): 379-407.

    3. [3]

      [3] MEYER S, HSING C. Modern and prospective technologies for hydrogen production from fossil fuels[J]. Int J Hydrogen Energy, 1989, 14(11): 797-820.

    4. [4]

      [4] NILGEN C, BILGEN E. An assessment on hydrogen production using central receiver solar systems[J]. Int J Hydrogen Energy, 1984, 9(3): 197-204.

    5. [5]

      [5] PENA M A, GOMEZ J P, FIERRO J L G. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A: Gen, 1996, 144(1/2): 7-57.

    6. [6]

      [6] KARUNADASA H I, CHANG C J, LONG J R. A molecular molybdenum-oxo catalyst for generating hydrogen from water[J]. Nature, 2010, 464(7285): 132-133.

    7. [7]

      [7] 杨亚辉, 陈启元, 尹周澜, 李洁. 光催化分解水的研究进展[J]. 化学进展, 2005, 17(4): 631-642. (YANG Ya-hui, CHEN Qi-yuan, YIN Zhou-lan, LI Jie. Progress in research of photocatalytic water splitting[J]. Progress in Chemistry, 2005, 17(4): 631-642.)

    8. [8]

      [8] 祝星, 王华, 魏永刚, 李孔斋, 晏冬霞. 金属氧化物两步热化学循环分解水制氢[J]. 化学进展, 2010, 22(5): 1010-1020. (ZHU Xing, WANG Hua, WEI Yong-gang, LI Kong-zhai, YAN Dong-xia.. Hydrogen production by two-step water-splitting thermochemical cycle based on metal oxide redox system[J]. Progress in Chemistry, 2010, 22(5): 1010-1020.)

    9. [9]

      [9] NAVARRO R M, PENA M A, FIERRO J L G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass[J]. Chem Rev, 2007, 107(10): 3952-3991.

    10. [10]

      [10] TUZA P V, MANFRO R L, RIBEIRO N F P, SOUZA M M V M. Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors[J]. Renew Energy, 2013, 50: 408-414.

    11. [11]

      [11] VADUVA C C, VASZILCSIN N, KELLENBERGER A, MEDELEANU M. Catalytic enhancement of hydrogen evolution reaction on copper in the presence of benzylamine[J]. Int J Hydrogen Energy, 2011, 36(12): 6994-7001.

    12. [12]

      [12] 梁艳, 王平, 戴洪斌. 硼氢化钠催化水解制氢[J]. 化学进展, 2009, 21(10): 2219-2228. (LIANG Yan, WANG Ping, DAI Hong-bin. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution[J]. Progress in Chemistry, 2009, 21(10): 2219-2228.)

    13. [13]

      [13] 乐传俊, 顾黎萍, 何仁. RuH2(PPh3)4在催化有机反应中的应用[J]. 贵金属, 2009, 30(3): 54-61. (YUE Chuan-jun, GU Li-ping, HE Ren. RuH2(PPh3)4 as a catalyst for organic reactions[J]. Precious Metals, 2009, 30(3): 54-61.)

    14. [14]

      [14] HENRY J R. Electroless (autocatalytic) plating[J]. Metal Finish, 1971, 69(3): 424-436.

    15. [15]

      [15] MALLORY G O, HAJDU J B. Electroless plating: Fundamentals and application[M]. Orlando: American Electroplaters and Surface Finishers Society, 1990.

    16. [16]

      [16] BROOMAN E W. Modifying organic coatings to provide corrosion resistance: Part Ⅱ. Inorganic additives and inhibitors[J]. Metal Finish, 2002, 100(5): 42-53.

    17. [17]

      [17] SPENCER L F. The inducing process of electroless nicking[J]. Metal Finish, 1974, 72(4): 50-56.

    18. [18]

      [18] SMITH S F. The metal activity in electroless plating[J]. Metal Finish, 1979, 77(6): 60-64.

    19. [19]

      [19] VASKELIS A, JACIAUSKIENE J, STALNIONIENE I, NORKUS E. Accelerating effect of ammonia on electroless copper deposition in alkaline formaldehyde-containing solutions[J]. J Electroanal Chem, 2007, 600(1): 6-12.

    20. [20]

      [20] VASIKELIS A, JUSIKECNAS R, JACIIAUSKIENEC J. Copper hydride formation in the electroless copper plating process: In situ X-ray direction evidence and electrochemical study[J]. Electrochim Acta, 1998, 43(9): 1061-1066.

    21. [21]

      [21] 陈世途, 涂敏端, 刘家丽, 曹建荣. 亚磷酸氢钙的结构特性分析[J]. 四川联合大学学报(工程科学版), 1998, 2(3): 82-86. (CHEN Shi-tu, TU Min-duan, LIU Jia-li, CAO Jian-rong. The construction characteristics of calcium phosphite[J]. Journal of Sichuan Union University (Engineering Science Edition), 1998, 2(3): 82-86.)

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    17. [17]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    20. [20]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

Metrics
  • PDF Downloads(0)
  • Abstract views(497)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return