Citation:
LI Xiao-feng, ZHAO Jun-xiu, SHI Li-hong. Hydrophobic modification of SBA-15 and its influence on the properties of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(4): 455-460.
-
SBA-15 supports modified by different hydrophobic reagents (methyltriethoxysilane, dimethyldiethoxysilane and chlorotrimethylsilane) were prepared before the impregnation of cobalt precursor. The effects of hydrophobic modification on the crystallite structure and the reduction behaviors were studied by BET, FT-IR, 29Si CP MAS NMR, XRD, and H2-TPR. Fischer-Tropsch (F-T) synthesis performances were evaluated in a fixed-bed reactor at 2.0 MPa, 200~250 ℃, H2/CO (volume ratio)=2, and GHSV=1 000 h-1. The result indicated that hydrophobic modification led to the increase in reduction degree of the supported cobalt, resulting in the increase of CO conversion of cobalt catalysts for F-T synthesis. Moreover, due to the increase of Co3O4 crystallite size and the decrease of un-reducible cobalt compound after hydrophobic modification, CH4 selectivity decreased and C5+ selectivity increased.
-
-
-
[1]
[1] XING C, YANG G H, WANG D. Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for Fischer-Tropsch synthesis[J]. Catal Today, 2013, 215: 24-28.
-
[2]
[2] XIONG H F, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Cobalt catalysts supported on a micro-coil carbon in Fischer-Tropsch synthesis: A comparison with CNTs and CNFs[J]. Catal Today, 2013, 214: 50-60.
-
[3]
[3] XIE R Y, LI D B, HOU B, WANG J G, JIA L T, SUN Y H. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011, 12(7): 589-592.
-
[4]
[4] DAVIS B H. Fischer-Tropsch synthesis: Comparison of performances of iron and cobalt catalysts[J]. Ind Eng Chem Res, 2007, 46(26): 8938-8945.
-
[5]
[5] KHODAKOV A Y. Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance[J]. Catal Today, 2009, 144(3/4): 251-257.
-
[6]
[6] BESSEL S. Support effects in cobalt-based Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1993, 96(2): 253-268.
-
[7]
[7] WANG W J, CHEN Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts[J]. Appl Catal A: Gen, 1991, 77(2): 223-233.
-
[8]
[8] REUEL R C, BARTHOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. J Catal, 1984, 85(1): 78-88.
-
[9]
[9] LIPIDUS A, KRYLOVA A, RATHOUSKY J, ZUKAL A, JANCALKOVA M. Hydrocarbon synthesis from CO and hydrogen on impregnated cobalt catalysts: II Activity of 10% Co/Al2O3 and 10% Co/SiO2 catalysts in FT synthesis[J]. Appl Catal A: Gen, 1992, 80(1): 1-11.
-
[10]
[10] BECHARA R, BALOY D, VANHOVE D. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis[J]. Appl Catal A: Gen, 2001, 207(1/2): 343-353.
-
[11]
[11] OHTSUKA Y, TAKAHASHI Y, NOGUCHI M, ARAI T, TAKASAKI S, TSUBOUCHI N, WANG Y. Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer-Tropsch synthesis[J]. Catal Today, 2004, 89(4): 419-429.
-
[12]
[12] KIM D J, DUNN B C, COLE P, TURPIN G, ERNST R D, PUGMIRE R J, KANG M, KIM J M, EYRING E M. Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst[J]. Chem Commun, 2005, (11): 1462-1464.
-
[13]
[13] WANG Y, NOGUCHI M, TAKAHASHI Y, OHTSUKA Y. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts[J]. Catal Today, 2001, 68(1/3): 3-9.
-
[14]
[14] ZHANG Y, HANAYAMA K, TSUBAKI N. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts[J]. Catal Commun, 2006, 7(5): 251-254.
-
[15]
[15] 高海燕, 杨文书, 相宏伟, 李永旺, 孙予罕, 刘涛, 谢亚宁, 张静, 胡天斗. pH值对Co/SiO2催化剂还原性能的影响[J]. 催化学报, 2002, 23(5): 430-434. (GAO Hai-yan, YANG Wen-shu, XIANG Hong-wei, LI Yong-wang, SUN Yu-han, LIU Tao, XIE Ya-ning, ZHANG Jing, HU Tian-dou. Effect of pH value of silica on reducibility of CO/SiO2 catalyst[J]. Chinese Journal of Catalysis, 2002, 23(5): 430-434.)
-
[16]
[16] WANG Y, HOU B, CHEN J, JIA L, LI D, SUN Y. Ethylenediamine modified Co/SiO2 sol-gel catalysts for non-ASF FT synthesis of middle distillates[J]. Catal Commun, 2009, 10(6): 747-752.
-
[17]
[17] SHI L H, LI D B, HOU B, WANG Y L, SUN Y H. The modification of SiO2 by various organic groups and its influence on the properties of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2010, 91(4): 394-398.
-
[18]
[18] ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores[J]. Science, 1998, 279(5350): 548-552.
-
[19]
[19] DUAN X L, YUAN D R, SUN Z H, SUN H Q, XU D, LV M K. Synthesis and characterization of ZnAl2O4/SiO2 nanocomposites by sol-gel method[J]. J Crystal Growth, 2003, 252(1/3): 4-8.
-
[20]
[20] LI G S, LI P L, SMITH R L, INOMATA H. Characterization of the dispersion process for NiFe2O4 nanocrystals in a silica matrix with infrared spectroscopy and electron paramagnetic resonance[J]. J Mol Struct, 2001, 560(1/3): 87-93.
-
[21]
[21] IZUTSU H, NAIR P K, KIYOZUMI Y, MIZWKAMI F. Structure and properties of TiO2-SiO2 prepared by sol-gel method in the presence of tartaric acid[J]. Mater Res Bull, 1997, 32(9): 1303-1311.
-
[22]
[22] RAO A V, WAGH P B, HARANATH D, RISBUD P P, KUMBHARE S D. Influence of temperature on the physical properties of TEOS silica xerogels[J]. Ceram Int, 1999, 25(6): 505-509.
-
[23]
[23] JUAN F D, RUIZ-HITZKY E. Selective functionalization of mesoporous silica[J]. Adv Mater, 2000, 12(6): 430-432.
-
[24]
[24] ZHAO X S, LU G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study[J]. J Phys Chem B, 1998, 102(9): 1556-1561.
-
[25]
[25] BABONNEAU F, LEITE L, FONTLUPT S. Structural characterization of organically-modified porous silicates synthesized using CTA+ surfactant and acidic conditions[J]. J Mater Chem, 1999, 9: 175-178.
-
[26]
[26] ZHANG Y, KIM J M, WU D, SUN Y, ZHAO D, DENG S. Sol-gel synthesis of methyl-modified mesoporous materials with dual porosity[J]. J Non-Crystal Solids, 2005, 351(8/9): 777-783.
-
[27]
[27] SHIMOJIMA A, UMEDA N, KURODA K. Synthesis of layered inorganic-organic nanocomposite films from mono-, di-, and trimethoxy(alkyl)silane-tetramethoxysilane systems[J]. Chem Mater, 2001, 13(10): 3610-3616.
-
[28]
[28] LIU Y H, LIN H P, MOU C Y. Direct method for surface silyl functionalization of mesoporous silica[J]. Langmuir, 2004, 20(8): 3231-3239.
-
[29]
[29] JIA M, SEIFERT A, THIEL W R. Mesoporous MCM-41 materials modified with oxodiperoxo molybdenum complexes: Efficient catalysts for the epoxidation of cyclooctene[J]. Chem Mater, 2003, 15(11): 2174-2180.
-
[30]
[30] SCHANKE D, VADA S, BLEKKAN E A, HILMEN A M, HOLMEN A. Study of Pt-promoted cobalt CO hydrogenation catalysts[J]. J Catal, 1995, 156(1): 85-95.
-
[31]
[31] ZHOU W, CHEN J G, FANG K G, SUN Y H. The deactivation of Co/SiO2 catalyst for Fischer-Tropsch synthesis at different ratios of H2 to CO[J]. Fuel Process Technol, 2006, 87(7): 609-616.
-
[32]
[32] RODRIGUES E L, BUENO J M C. Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde II: Influence of the Co surface structure on selectivity[J]. Appl Catal A: Gen, 2002, 232(1/2): 147-158.
-
[33]
[33] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal, 2002, 206(2): 230-241.
-
[34]
[34] BELAMBE A R, OUKACI R, GOODWIN J G. Effect of pretreatment on the activity of a Ru-promoted Co/Al2O3 Fischer-Tropsch catalyst[J]. J Catal, 1997, 166(1): 8-15.
-
[35]
[35] IGLESIA E. Design, synthesis and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 1997, 161(1/2): 59-78.
-
[1]
-
-
-
[1]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[2]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[3]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[4]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[5]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[6]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[7]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[8]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[9]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[10]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[11]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[12]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[13]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[16]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[17]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[18]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[19]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[20]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(382)
- HTML views(41)