Citation: ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 427-433. shu

Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor

  • Corresponding author: CHEN Xue-li, 
  • Received Date: 9 October 2013
    Available Online: 29 December 2013

    Fund Project: 国家自然科学基金(21306050) (21306050)国家科技支撑计划(2012BAA09B02) (2012BAA09B02)新世纪优秀人才支持计划(NCET-12-0854)。 (NCET-12-0854)

  • Three materials including raw and water-washed ice straw, and microcrystalline cellulose with 5%KCl loaded were pyrolysed in the fixed bed reactor to investigate the transfer of potassium in four forms. The results indicate that the release of potassium changes little with pyrolysis temperature below 700 ℃, and the release of potassium dramatically increases with pyrolysis temperature above 700 ℃. During the rice straw pyrolysis, the transfer of four forms of potassium takes place, in which the water soluble and the potassium in residue decrease. It is confirmed that the potassium combined with carbon can be partly changed to water soluble, and the water soluble and organically bound potassium can exchange each other during pyrolysis.
  • 加载中
    1. [1]

      [1] ZENG X, MA Y, MA L. Utilization of straw in biomass energy in China[J]. Renew Sus Energy Rev, 2007, 11(5): 976-987.

    2. [2]

      [2] ZHANG Z, CHEN B, CHEN A, ZHAO W. Barriers to commercialization development of crop straw gasification technology in China and promoting policy design[J]. Part B: Econom, Plan, Pol, 2013, 8(3): 279-289.

    3. [3]

      [3] LIU H P, FENG Y J, WU S H, LIU D Y. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw[J]. Bioresour Technol, 2009, 100(24): 6505-6513.

    4. [4]

      [4] TORTOSA MASIA A A, BUHRE B J P, GUPTA R P, WALL T F. Characterising ash of biomass and waste[J]. Fuel Process Technol, 2007, 88(11/12): 1071-1081.

    5. [5]

      [5] EOM I Y, KIM J Y, KIM T S, LEE S M, CHOI D, CHOI I G, CHOI J W. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass[J]. Bioresour Technol, 2012, 104: 687-694.

    6. [6]

      [6] HU J L, HE X W, WANG C R, LI J W, ZHANG C H. Cadmium adsorption characteristic of alkali modified sewage sludge[J]. Bioresour Technol, 2012, 121: 25-30.

    7. [7]

      [7] 杨涛. 生物质快速热解气化过程中碱/碱土金属析出规律的试验研究[D]. 武汉: 华中科技大学, 2009.(YANG Tao. Study on the release of AAEMs during biomass rapid pyrolysis and gasification[D]. Wuhan: Huazhong University of Science and Technology, 2009.)

    8. [8]

      [8] KEOWN D M, FAVAS G, HAYSHIS J I, LI C Z. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: Differences between sugar cane bagasse and cane trash[J]. Bioresour Technol, 2005, 96(14): 1570-1577.

    9. [9]

      [9] JENSEN P A, FRANDEN F J, DAM-JOHANSEN K, SANDER, B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels, 2000, 14(6): 1280-1285.

    10. [10]

      [10] KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels, 2004, 18(5): 1385-1399.

    11. [11]

      [11] LINDBERG D, BACKMAN R, CHARTRAND P, HUPA M. Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion-current situation and future developments[J]. Fuel Process Technol, 2013, 105: 129-141.

    12. [12]

      [12] 陈安合, 杨学民, 林伟刚. 生物质热解和气化过程Cl及碱金属逸出行为的化学热力学平衡分析[J]. 燃料化学学报, 2007, 35(5): 539-547.(CHEN An-he, YANG Xue-min, LIN Wei-gang. Release characteristics of chlorine and alkali metals during pyrolysis and gasification of biomass[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 539-547.)

    13. [13]

      [13] BOSTROM D, SKOGLUND N, GRIMM A. Ash transformation chemistry during combustion of biomass[J]. Energy Fuels, 2011, 26(1): 85-93.

    14. [14]

      [14] PETTERSSON A, ÅMAND L E, STEENARI B M. Chemical fractionation for the characterisation of fly ashes from co-combustion of biofuels using different methods for alkali reduction[J]. Fuel, 2009, 88(9): 1758-1772.

    15. [15]

      [15] 吴晓红. 无机盐在秸秆中的分布及酶解纤维素机理研究[D]. 合肥: 中国科学技术大学, 2009.(WU Xiao-hong. Study on distribution and composition of inorganic salts in straw and mechanism of cellulase[D]. Hefei: University of Science and Technology of China, 2009.)

    16. [16]

      [16] ANDREA J C, AKAY G. Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse[J]. Fuel, 2012, 91(1): 253-263.

    17. [17]

      [17] CEN/TS 15290: 2006. Solid biofuels-determination of major elements[S].

    18. [18]

      [18] BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chem Prod Res Dev, 1985, 24: 145-149.

    19. [19]

      [19] ZEVENHOVEN-ONDERWATER M, BACKMAN R, SKRIFAVARS B, HUPA M. The ash chemistry in fluidised bed gasification of biomass fuels. Part 1: Predicting the chemistry of melting ashes and ash-bed material interaction[J]. Fuel, 2001, 80(10): 1489-1502.

    20. [20]

      [20] LIAW S B, WU H W. Leaching characteristics of organic and inorganic matter from biomass by water: Differences between batch and semi-continuous operations[J]. Ind Eng Chem Res, 2013, 52(11): 4280-4289.

    21. [21]

      [21] 余春江, 骆仲泱, 张文楠, 方梦祥, 周劲松, 岑可法. 碱金属及相关无机元素在生物质热解中的转化析出[J]. 燃料化学学报, 2000, 28(5): 420-425.(YU Chun-jiang, LUO Zhong-yang, ZHANG Wen-nan, FANG Meng-xiang, ZHOU Jing-song, CENG Ke-fa. Inorganic material emission during biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2000, 28(5): 420-425.)

    22. [22]

      [22] KAPTEIJN F, JURIAANS J, MOULIJN J A. Formation of intercalate-like structures by heat treatment of K2CO3-carbon in an inert atmosphere[J]. Fuel, 1983, 62(2): 249-251.

    23. [23]

      [23] WU Y Q, WU S Y, LI Y, GAO J S. Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw[J]. Energy Fuels, 2009, 23(10): 5144-5150.

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    10. [10]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    14. [14]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return