Citation:
LI Shuai-dan, CHEN Xue-li, LIU Ai-bin, WANG Li, YU Guang-suo. Mechanism of cellulose pyrolysis and tar decomposition in a fixed bed reactor[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(4): 414-419.
-
Cellulose pyrolysis was studied in a fixed bed reactor at 500~900 ℃; the tar and gaseous products were analyzed by GC-MS and gas chromatograph, respectively. The results showed that the yield of gaseous products increases and that of tar and char decreases with the increase of pyrolysis temperature; the yield of CO, CH4 and H2 is increased significantly, while the yield of CO2 is almost not altered. Tar is generated by the secondary reactions, while the non-condensable gases are generated by both the primary and secondary pyrolysis products. The mechanism of tar decomposition was considered through calculation with Gaussian 09, which suggests that cellulose is cleaved into cellulose monomer at the beginning of pyrolysis process. The hydroxy functional groups are removed from cellulose monomer preferentially, and then the intermediates are reformed into tar. With the increase of temperature, ethers, alcohols, acids and other compounds in tar are decomposed into free radicals; the amounts of alkenes, alkynes and non-condensable gases formed are then increased because of the reformation of free radicals at high temperature.
-
Keywords:
- cellulose,
- pyrolysis,
- tar,
- mechanism,
- calculation
-
-
-
[1]
[1] KIRUBAKARAN V, SIVARAMAKRISHNAN V, NALINI R, SEKAR T, PREMALATHA M, SUBRAMANIA P. A review on gasification of biomass[J]. Renew Sust Energy Rev, 2009, 13(1): 179-186.
-
[2]
[2] KIRKELS A F, VERBONG G P J. Biomass gasification: Still promising? A 30-year global overview[J]. Renew Sust Energy Rev, 2011, 15(1): 471-481.
-
[3]
[3] 侯斌, 吕子安, 李晓辉, 李定凯. 生物质热解产物中焦油的催化裂解[J]. 燃料化学学报, 2001, 29(1): 70-75.(HOU Bin, LV Zi-an, LI Xiao-hui, LI Ding-kai. Catalytic cracking of tar derived from biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2001, 29(1): 70-75.)
-
[4]
[4] 余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法. 一种改进的纤维素热解动力学模型[J]. 浙江大学学报(工学版), 2002, 36(5): 509-515.(YU Chun-jiang, LUO Zhong-yang, FANG Meng-xiang, LIAO Yan-fen, WANG Shu-rong, CEN Ke-fa. An improved kinetic model for cellulose pyrolysis[J]. Journal of Zhejiang University (Engineering Science), 2002, 36(5): 509-515.)
-
[5]
[5] BAI X L, JOHNSTON P, SADULA S, BROWN R C. Role of levoglucosan physiochemistry in cellulose pyrolysis[J]. J Anal Appl Pyrolysis, 2013, 99: 58-65.
-
[6]
[6] HOSOYA T, KAWAMOTO H, SAKA S. Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases[J]. J Anal Appl Pyrolysis, 2008, 83(1): 64-70.
-
[7]
[7] 黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815.(HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807-815.)
-
[8]
[8] ZHANG X L, YANG W H, BLASIAK W. Kinetics of levoglucosan and formaldehyde formation during cellulose pyrolysis process[J]. Fuel, 2012, 96: 383-391.
-
[9]
[9] ZHANG Y Y, LIU C, XIE H. Mechanism studies on β-D-glucopyranose pyrolysis by density functional theory methods[J]. J Anal Appl Pyrolysis, 2014, 105: 23-34.
-
[10]
[10] 贾建波, 曾凡桂, 李美芬, 谢克昌. 用密度泛函理论研究煤中甲基苯生成甲烷的及反应机理[J]. 化工学报, 2010, 61(12): 3235-3242.(JIA Jian-bo, ZENG Fan-gui, LI Mei-fen, XIE Ke-chang. Mechanism of methane formation during toluene pyrolysis using DFT calculation[J]. CIESC Journal, 2010, 61(12): 3235-3242.)
-
[11]
[11] LIU C , HUANG J B, HUANG X L, LI H J, ZHANG Z. Theoretical studies on formation mechanisms of CO and CO2 in cellulose pyrolysis[J]. Comput Theor Chem, 2011, 964(1/3): 207-212.
-
[12]
[12] LING L X, ZHANG R G, WANG B J, XIE K C. Density functional theory study on the pyrolysis mechanism of thiophene in coal[J]. J Mol Struct: Theochem, 2009, 905(1/3): 8-12.
-
[13]
[13] HUANG X L, LIU C, HUANG J B, LI H J. Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Comput Theor Chem, 2011, 976(1/3): 51-59.
-
[14]
[14] 廖艳芬. 纤维素热裂解机理试验研究[D]. 杭州: 浙江大学, 2003.(LIAO Yan-fen. Experimental study on thermal decompostion mechanism of cellulose[D]. Hangzhou: Zhengjiang University, 2003.)
-
[15]
[15] 谭洪. 生物质热裂解机理试验研究[D]. 杭州: 浙江大学, 2005.(TAN Hong. Experimental study on biomass thermal decomposition mechanism[D]. Hangzhou: Zhengjiang University, 2003.)
-
[16]
[16] LIN Y C, CHO J, TOMPSETT G A, WESTMORELAND P R, HUBER G W. Kinetics and mechanism of cellulose pyrolysis[J] J Phys Chem C, 2009, 113(46): 20097-20107.
-
[17]
[17] LI S, LYONS-HART J, BANYASZ J, SHAFER K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817.
-
[18]
[18] SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresour Technol, 2009, 100(24): 6496-6504.
-
[19]
[19] PATWARDHAN P R, DALLUGE D L, SHANKS B H, BROWN R C. Distinguishing primary and secondary reactions of cellulose pyrolysis[J]. Bioresour Technol, 2011, 102(8): 5265-5269.
-
[20]
[20] 耿中峰. 纤维素热裂解机理的理论和实验研究[D]. 天津: 天津大学, 2010.(GENG Zhong-feng. Theoretical and experimental study on mechanism of cellulose pyrolysis[D]. Tianjin: Tianjin University, 2003.)
-
[21]
[21] MCGRATH T E, CHAN W G, HAJALIGOL M R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose[J]. J Anal Appl Pyrolysis, 2003, 66(1/2): 51-70.
-
[22]
[22] ZHANG X L, YANG W H, DONG C Q. Levoglucosan formation mechanisms during cellulose pyrolysis[J]. J Anal Appl Pyrolysis, 2013, 104: 19-27.
-
[23]
[23] WANG S R, GUO X J, LIANG T, ZHOU Y, LUO Z Y. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresour Technol, 2012, 104: 722-728.
-
[1]
-
-
-
[1]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[4]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[5]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[6]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[7]
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
-
[8]
Chi Zhang , Yi Xu , Xiaopeng Guo , Zian Jie , Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[10]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[11]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
-
[12]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[13]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[16]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[17]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[18]
Meng Lin , Heng Zhang , Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053
-
[19]
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
-
[20]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(425)
- HTML views(41)