Citation: Sameh M. K. Aboul-Fotouh. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 350-356. shu

Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts

  • Corresponding author: Sameh M. K. Aboul-Fotouh, 
  • Received Date: 18 December 2013
    Available Online: 30 January 2014

  • The catalytic conversion of methanol to dimethylether (DME) was studied over CuO/Al2O3, ZnO/Al2O3 and ZnO-CuO/Al2O3 nanocatalysts prepared in presence or absence of ultrasonic irradiation. The catalysts were characterized by X-ray diffraction (XRD), surface characterization method (BET), scanning electron microscope (SEM), H2-temperature programmed reduction (H2-TPR) and temperature programmed desorption of ammonia (NH3-TPD). The experimental results show that during catalytic dehydration of methanol to dimethylether, the activities of the CuO/Al2O3, ZnO/Al2O3 and ZnO-CuO/Al2O3 catalysts prepared using ultrasonic treatment are much higher than those prepared in absence of ultrasonication. SEM shows that the use of ultrasonication results in much smaller nanoparticles. BET and XRD show that the ultrasonication increases the surface area and pore volume of the catalysts. H2-TPR profiles indicated that reducibility of the sonicated nanocatalysts is carried out at lower temperatures. NH3-TPD shows that ultrasound irradiation has enhanced the acidity of the nanocatalyst and hence enhanced catalytic performance for DME formation.
  • 加载中
    1. [1]

      [1] FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997, 107: 117-125.

    2. [2]

      [2] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.

    3. [3]

      [3] VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004, 276(1/2): 251-256.

    4. [4]

      [4] CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.

    5. [5]

      [5] XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997, 149: 303-309.

    6. [6]

      [6] KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.

    7. [7]

      [7] VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004, 96(1/2): 23-28.

    8. [8]

      [8] FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.

    9. [9]

      [9] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 147(6): 147-152.

    10. [10]

      [10] KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008, 348(1): 113-120.

    11. [11]

      [11] ZHANG Y L, SUN Q, DENG J F, WU D. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties[J]. Appl Catal A: Gen, 1997, 158(1/2): 105-120.

    12. [12]

      [12] [JP2]REUBROYCHAROEN P, VITIDSANT T, YONEYAMA Y, TSUBAKI N. Development of a new low-temperature methanol synthesis process[J]. Catal Today, 2004, 89(4): 447-454.

    13. [13]

      [13] MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J Catal, 2005, 230(1): 140-149.

    14. [14]

      [14] BALTES C, VUKOJEVIC S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344.

    15. [15]

      [15] BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/Al2O3 catalysts[J]. J Catal, 2009, 267(1): 24-29.

    16. [16]

      [16] YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23): 8129-8136.

    17. [17]

      [17] [JP2]ABOUL-FOTOUH S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013, 41(9): 1077-1084.

    18. [18]

      [18] ABOUL-GHEIT A K. Acid site strength distibution in mordenites by differential scanning calorimetry[J]. J Catal, 1988, 113(2): 490-496.

    19. [19]

      [19] ABOUL-GHEIT A K. Effect of decationation and dealumination of zeolite Y on its acidity as assessed by ammonia desorption measured by differential scanning calorimetry (DSC)[J]. Thermochim Acta, 1991, 191(2): 233-240.

    20. [20]

      [20] FREEL J. Chemisorption on supported platinum: Ⅰ. Evaluation of a pulse method[J]. J Catal, 1972, 25(1):139-148.

    21. [21]

      [21] REZAEI M, ALAVI S M, SAHEBDELFAR S, YAN Z F. Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure[J]. Poweder Technol, 2006, 168(2): 59-63.

    22. [22]

      [22] KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.

    23. [23]

      [23] XIA S, NIE R, LU X, WANG L, CHEN P, HOU Z. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMg<em>xAl2O8.6 catalysts: The role of basicity and hydrogenation spillover[J]. J Catal, 2012, 296: 1-11.

    24. [24]

      [24] NIE R, LEI H, PAN S, WANG L, FEI J, HOU Z. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425.

    25. [25]

      [25] FEI J, YANG M, HOU Z, ZHENG X. Effect of the addition of manganese and zinc on the properties of copper-based catalyst for the synthesis of syngas to dimethyl ether[J]. Energy Fuels, 2004, 18(5): 1584-1587.

    26. [26]

      [26] YANG M, MEN Y, LI S, CHEN G. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst[J]. Int J Hydrog Energy, 2012, 37(10): 8360-8369.

    27. [27]

      [27] NASIKIN M, WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5(2): 111-115.

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    4. [4]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Shujun NingZhiyuan WeiZhening ChenTianmin WuLu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057

    15. [15]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    16. [16]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    17. [17]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

Metrics
  • PDF Downloads(0)
  • Abstract views(318)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return