Citation:
Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(2): 212-218.
-
In this research work, two 30%(Co-Mn)/TiO2 catalysts were prepared using sol-gel (catalyst A) and co-precipitation (catalyst B) methods. The activity and selectivity to C2~4 light olefins in Fischer-Tropsch synthesis (FTS) has been studied in a fixed-bed reactor under different operational conditions. These operational conditions were: temperature 220~280 ℃, and total pressure from 0.1~0.6 MPa. The optimum operating conditions were investigated after steady state. As the results shown, the catalyst A was more selective to C2~4 olefins (58.7% in 260 ℃) and catalyst B was more selective to C5+ hydrocarbons. Characterization of both catalysts was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurements methods.
-
Keywords:
- Fischer-Tropsch synthesis,
- light olefins,
- characterization
-
-
-
[1]
[1] CHANENCHUK C A, YATES I C, SATTERFIELD C N. The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst[J]. Energy Fuels, 1991, 5(6): 847-855.
-
[2]
[2] HAGHSHENAS FARD M, MALEKI L, KHOSHNODI M, MIRZAEI A A. Hydrogenation of CO over a cobalt/cerium oxide catalyst for production of lower olefins[J]. Iran J Sci Tech Trans B, 2004, 28(B6): 689-693.
-
[3]
[3] Park C, Baker R T K. Carbon deposition on iron–nickel during interaction with ethylene-carbon monoxide-hydrogen mixtures[J]. J Catal, 2000, 190(1): 104-117.
-
[4]
[4] KLBEL H, TILLMETZ D K. Chem Abst, 1977, 86(4) (1977) 192342.
-
[5]
[5] FEYZI M, MIRZAEI A A. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.
-
[6]
[6] TAUSTER S J, FUNG S C, GARDEN R. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J Am Chem Soc, 1978, 100(1): 170-175.
-
[7]
[7] MA X D, SUN Q W, CAO F H, YING W Y, FANG D Y. Effects of the different supports on the activity and selectivity of iron-cobalt bimetallic catalyst for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2006, 15(4): 335-339.
-
[8]
[8] COPPERWAITE R G, HUTCHINGS G J, VAN DER RIET M, WOODHOUSE J R. Carbon monoxide hydrogenation using manganese oxide-based catalysts: Effect of operating conditions on alkene selectivity[J]. Int Eng Chem Res, 1987, 26(5): 969-974.
-
[9]
[9] COLLEY S, COPPERTHWAITE R G, HUTCHINGS G J, VAN DER RIET M. Carbon monoxide hydrogenation using cobalt manganese oxide catalysts: Initial catalyst optimization studies[J]. Int Eng Chem Res, 1988, 27(8): 1339-1344.
-
[10]
[10] VAN DER RIET M, HUTCHINGS G J, COPPERTHWAITE R G. Selective formation of C3 hydrocarbons from CO + H2 using cobalt-manganese oxide catalysts[J]. J Chem Soc Chem Commun, 1986, 98(10): 798-799.
-
[11]
[11] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3): 227-241.
-
[12]
[12] REUEL R C, BARTOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. J Catal, 1984, 85(1): 78-88.
-
[13]
[13] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224.
-
[14]
[14] MIRZAEI A A, FAIZI M, HABIBPOUR R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2006, 306: 98-107.
-
[15]
[15] ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332.
-
[16]
[16] SHROFF M D, KALAKKAD D S, KOHLER S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.
-
[17]
[17] O'BRIEN R J, XU L, MILBURN D R, LI Y X, KLABUNDE K J, DAVIS B H. Fischer-Tropsch synthesis: Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst[J]. Top Catal, 1995, 2(1/4): 1-15.
-
[18]
[18] AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts[J]. J Phys Chem, 1978, 82(5): 558-563.
-
[19]
[19] MAULDIN C H, VARNADO D E. Rhenium as a prometer of titania-supported cobalt Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2004, 136: 417-422.
-
[20]
[20] BARRAULT J, FORQUY C, PERRICHON V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl Catal A: Gen, 1993, 5(1): 119-125.
-
[21]
[21] KRISHNA K R, BELL A T. Estimates of the rate coefficients for chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO2[J]. J Catal, 1993, 139(1): 104-118.
-
[22]
[22] GRIBOVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2002, 144: 609-616.
-
[23]
[23] FEYZI M, KHODAEI M M, SHAHMORADI J. Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production[J]. J Fuel Process Technol, 2012, 93(1): 90-98.
-
[24]
[24] KUIPERS E W, SCHEPER C, WILSON J H, VINKENBURG I H, OOSTERBEEK H. Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis[J]. J Catal, 1996, 158(1): 288-300.
-
[25]
[25] MORALES F, GRANDJEAN D, MENS A, DE GROOT F M F, WECKHUYSEN B M. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: Relationships between preparation method, molecular structure, and catalyst performance[J]. J Phys Chem, 2006, 110(17): 8626-8639.
-
[1]
-
-
-
[1]
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
-
[2]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
-
[5]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
-
[6]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[7]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[8]
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
-
[9]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[10]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[11]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[12]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[13]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[14]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[15]
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
-
[16]
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
-
[17]
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
-
[18]
Man Wu , Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452
-
[19]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[20]
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(343)
- HTML views(15)