Citation: GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 116-120. shu

Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2

  • Corresponding author: SUN Guo-hua,  LI Kai-xi, 
  • Received Date: 7 April 2013
    Available Online: 3 June 2013

    Fund Project: 国家自然科学基金(51002166,51061130536) (51002166,51061130536)科技部国际合作项目(2010DFB90690-4) (2010DFB90690-4)山西省国际合作项目(2010081031-2,2013081016) (2010081031-2,2013081016)山西省科技创新项目(2012102007)。 (2012102007)

  • Resin-based spherical activated carbons were prepared from four kinds of ion exchange resin(two strong basic resins D201 and D280, two weak basic resins D301G and D301R)through sulfonation, carbonization and activation treatment. The yield of the spherical activated carbons, the surface morphology and the specific surface area were characterized by thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption. The adsorptive capacities of the spherical activated carbons towards CO2 were investigated. The results showed that the yield of carbonized spheres was improved after sulfonation. The four prepared spherical activated carbon samples exhibited good adsorption performance to CO2. The strong basic resin-based spherical activated carbons provided a higher CO2 adsorption capacity than the weak basic resin-based spherical activated carbons. The CO2 adsorption capacity of the spherical activated carbons obtained from strong basic resin D201 reached 2.57 mmol/g, and remained high after ten cycles.
  • 加载中
    1. [1]

      [1] GODINI H R, MOWLA D. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds[J]. Chem Eng Res Des, 2008, 6(4): 401-409.

    2. [2]

      [2] PLAZA J M, WAGENER D V, ROCHELLE G T. Modeling CO2 capture with aqueous monoethanolamine[J]. Energy Procedia, 2009, 1(1): 1171-1178.

    3. [3]

      [3] Yang H Q, XU Z H, FAN M H, GUPTA R, SLIMANE R B, BLAND A E, WRIGHT I. Progress in carbon dioxide separation and capture: A review[J]. J Environ Sci, 2008, 20(1): 14-27.

    4. [4]

      [4] KAI T, KAZAMA S, FUJIOKA Y. Development of cesium-incorporated carbon membranes for CO2 separation under humid conditions[J]. J Membr Sci, 2009, 342(1/2): 14-21.

    5. [5]

      [5] 史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 氨基功能化SBA-16对CO2的动态吸附特性[J]. 物理化学学报, 2010, 26(11): 3023-3029. (SHI Jing-jin, LIU Ya-min, CHEN-Jie, ZHANG Yu, SHI Yao. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. Acta Phys-Chim Sin, 2010, 26(11): 3023-3029.)

    6. [6]

      [6] 郑修新, 张晓云, 余青霓, 赵蓓. CO2吸收材料的研究进展[J]. 化工进展, 2012, 31(2): 360-366. (ZHENG Xiu-xin, ZHANG Xiao-yun, YU Qing-ni, ZHAO Bei. Progress in carbon dioxide absorption materials[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 360-366.)

    7. [7]

      [7] YAMAGUCHI T, NⅡTSUMA T, NAIR B N, NAKAGAWA K. Lithium silicate based membranes for high temperature CO2 separation[J]. J Membr Sci, 2007, 294(1/2): 16-21.

    8. [8]

      [8] 张睿, 周贝, 段晓佳, 胡子君, 李俊宁, 金鸣林. 活性炭表面化学性质对二氧化碳吸附平衡的影响[J]. 煤炭转化, 2011, 34(4): 57-61. (ZHANG Rui, ZHOU Bei, DUAN Xiao-jia, HU Zi-jun, LI Jun-ning, JIN Ming-lin. Effect of surface chemistry of activated carbon on its equilibrium adsorption capacity for CO2[J]. Coal Conversion, 2011, 34(4): 57-61.)

    9. [9]

      [9] DÍAZ E, MUÑOZ E, VEGA A, ORDÓÑEZ S. Enhancement of the CO2 retention capacity of X zeolites by Na-and Cs-treatments[J]. Chemosphere, 2008, 70(8): 1375-1382.

    10. [10]

      [10] PEVIDA C, PLAZA M G, ARIAS B, FERMOSO J, RUBIERA F, PIS J J. Surface modification of activated carbons for CO2 capture[J]. Appl Surf Sci, 2008, 254(22): 7165-7172.

    11. [11]

      [11] GUO B, CHANG L P, XIE K C. Adsorption of carbon dioxide on activated carbon[J]. J Nat Gas Chem, 2006, 15(3): 223-229.

    12. [12]

      [12] 闻霞, 孙楠楠, 李碧, 李军平, 王峰, 赵宁, 肖福魁, 魏伟, 孙予罕, 任泽厚, 郭金刚, 王志杰, 李庆, 吴志斌. MgO/Al2O3 吸附剂对CO2 动态吸附性能的研究[J]. 燃料化学学报, 2010, 38(2): 247-251. (WEN Xia, SUN Nan-nan, LI Bi, LI Jun-ping, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han, REN Ze-hou, GUO Jin-gang, WANG Zhi-jie, LI Qing, WU Zhi-bin. Dynamic adsorption study of CO2 adsorption by MgO/Al2O3[J].Journal of Fuel Chemistry and Technology, 2010, 38(2): 247-251.)

    13. [13]

      [13] 张学军, 刘生, 沈曾民. 制备工艺对球状活性炭结构与性能的影响[J]. 现代化工, 2006, 26(2): 150-153. (ZHANG Xue-jun, LIU Sheng, SHEN Zeng-min. Effect of preparing process on structure and property of spherical activated carbon[J]. Modern Chemical Industry, 2006, 26(2): 150-153.)

    14. [14]

      [14] 司崇殿, 郭庆杰.活性炭活化机理与再生研究进展[J]. 中国粉体技术, 2008, 14(5): 48-52. (SI Chong-dian, GUO Qing-jie. Progress research on activation mechanism and regeneration of activated carbon[J]. China Powder Science and Technology, 2008, 14(5): 48-52.)

  • 加载中
    1. [1]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return