Citation: HAN Feng, ZHANG Yan-guo, MENG Ai-hong, LI Qing-hai. Evolution of gaseous products and analysis of methane generation reaction types during pyrolysis of Shuicheng lignite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 7-12. shu

Evolution of gaseous products and analysis of methane generation reaction types during pyrolysis of Shuicheng lignite

  • Corresponding author: ZHANG Yan-guo, 
  • Received Date: 10 July 2013
    Available Online: 5 September 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201502) (973计划,2011CB201502)云南省科技创新强省计划(2010AD010) (2010AD010)云南省重大科技专项—新能源(2012ZB006)。 (2012ZB006)

  • The Fourier transform infrared (FT-IR) spectroscopy was applied to investigate the functional groups of Shuicheng lignite, and the simultaneous thermogravimetry-mass spectrometry (TG/MS) at heating rate of 10 ℃/min was used to investigate the pyrolysis behavior of coal. The instantaneous evolution of the gaseous products (H2, CH4, H2O, CO, CO2) was studied by means of temperature-programmed pyrolysis experiments. The pyrolytic generation characteristics of methane was specially analyzed. Five peaks were fitted and the kinetic parameters were calculated by the fitting of curves. By the kinetic analysis combined with structure analysis, pyrolysis characteristics and the evolution features of other volatiles during pyrolysis, it is found that the lowest temperature peak represents the desorption of adsorbed methane in coal and the other four peaks are the results of methane generation during pyrolysis, which involves four types of reactions.
  • 加载中
    1. [1]

      [1] ÖZTASN A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.

    2. [2]

      [2] PORADA S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel, 2004, 83(9): 1191-1196.

    3. [3]

      [3] CRAMER B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics[J]. Org Geochem, 2004, 35(4): 379-392.

    4. [4]

      [4] 朱学栋, 朱子彬. 煤热失重动力学的研究[J]. 高校化学工程学报, 1999, 13(3): 223-228. (ZHU Xue-dong, ZHU Zi-bin. Study of the coal pyrolytic kinetics by thermogrametry[J]. Journal of Chemical Engineering of Chinese Universities, 1999, 13(3): 223-228.)

    5. [5]

      [5] 吕太, 张翠珍, 吴超. 粒径和升温速率对煤热分解影响的研究[J]. 煤炭转化, 2005, 28(1): 17-20. (LV Tai, ZHANG Cui-zhen, WU Chao. Study on the effect of coal diameter and heating rate on the coal pyrolysis[J]. Coal Conversion, 2005, 28(1): 17-20.)

    6. [6]

      [6] ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Analy Appl Pyrolysis, 1999, 50(1): 31-46.

    7. [7]

      [7] GEORGAKOPOULOS A. Study of low rank Greek coals using FTIR spectroscopy[J]. Energy Sources, 2003, 25(10): 995-1005.

    8. [8]

      [8] BARUAH M K, GOGOI P C. A new form of sulphur in coal: The discovery of an iron-sulphur coordination compound[J]. Fuel, 1998, 77(9): 979-985.

    9. [9]

      [9] 庞博, 戴和武. 兴隆庄煤显微组份热解失重及热解反应动力学的研究[J]. 燃料化学学报, 1989, 17(1): 1-7. (PANG Bo, DAI He-wu. Weight loss determination and pyrolytic kinetics study on Xing-long-zhuang Coal macerals[J]. Journal of Fuel Chemistry and Technology, 1989, 17(1): 1-7.)

    10. [10]

      [10] 朱学栋, 朱子彬. 煤化程度和升温速率对热分解影响的研究[J]. 煤炭转化, 1999, 22(2): 43-47. (ZHU Xue-dong, ZHU Zi-bin. Study on the effect of coal rank and heating rate on the pyrolysis[J]. Coal Conversion, 1999, 22(2): 43-47.)

    11. [11]

      [11] 沈兴. 差热, 热重分析与非等温固相反应动力学[M]. 北京: 冶金工业出版社, 1995: 75-76. (SHEN Xing. DTA, TGA and non-isothermal kinetics of solid-reactions[M]. Beijing: Metallurgical Industry Press, 1995: 75-76.)

    12. [12]

      [12] JÜNTGEN H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel, 1984, 63(6): 731-737.

    13. [13]

      [13] 李美芬, 曾凡桂, 贾建波, 谢克昌. 三种高变质程度煤热解过程中H2的逸出特征研究[J]. 燃料化学学报, 2007, 35(2): 237-240. (LI Mei-fen, ZENG Fan-gui, JIA Jian-bo, XIE Ke-chang. TG/MS study on evolution characteristics of hydrogen from pyrolysis of three high rank coals[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 237-240.)

    14. [14]

      [14] ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. J Anal Appl Pyrolysis, 1999, 50(1): 31-46.

    15. [15]

      [15] 刘生玉, 王宝俊, 谢克昌. 镜煤抽提物热解特性的实验研究[J]. 燃料化学学报, 2003, 31(5): 420-425. (LIU Sheng-yu, WANG Bao-jun, XIE Ke-chang. Experimental study on pyrolysis of extract from vitrain[J]. Journal of Fuel Chemistry and Technology, 2003, 31(5): 420-425.)

    16. [16]

      [16] 闫金定, 崔洪, 杨建丽, 刘振宇. 热重质谱联用研究兖州煤的热解行为[J]. 中国矿业大学学报, 2003, 32(3): 311-315. (YAN Jin-ding, CUI Hong, YANG Jian-li, LIU Zhen-yu. Research on pyrolysis behavior of Yanzhou coal using TG/MS[J]. Journal of China University of Mining & Technology, 2003, 32(3): 311-315.)

    17. [17]

      [17] VAN HEEK K H, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896.

    18. [18]

      [18] 傅献彩, 沈文霞, 姚天扬. 物理化学(下册)[M]. 4版. 北京: 高等教育出版社, 1993: 751-752. (FU Xian-cai, SHEN Wen-xia, YAO Tian-yang. Physical chemistry, volume 2[M]. 4th ed. Beijing: High Education Press, 1993: 751-752.)

    19. [19]

      [19] WEISHAUPTOVA Z, MEDEK J, KOVÁĶ L. Bond forms of methane in porous system of coal Ⅱ[J]. Fuel, 2004, 83(13): 1759-1764.

    20. [20]

      [20] ALEXEEV A D, ULYANOVA E V, STARIKOV G P, KOVRIGA N N. Latent methane in fossil coals[J]. Fuel, 2004, 83(10): 1407-1411.

    21. [21]

      [21] SAVAGE P E. Mechanisms and kinetics models for hydrocarbon pyrolysis[J]. J Anal Appl Pyrolysis, 2000, 54(1): 109-126.

    22. [22]

      [22] 曾凡桂, 贾建波. 霍林河褐煤热解甲烷生成反应类型及动力学的热重-质谱实验与量子化学计算[J]. 物理化学学报, 2009, 25(6): 1117-1124. (ZENG Fan-gui, JIA Jian-bo. Reaction types and kinetics of methane generation from Huolinhe lignite pyrolysis by TG/MS experiment and quantum chemical calculations[J]. Acta Physico-Chimica Sinica, 2009, 25(6): 1117-1124.)

    23. [23]

      [23] PORADA S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel, 2004, 83(9): 1191-1196.

  • 加载中
    1. [1]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    2. [2]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    7. [7]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    8. [8]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    9. [9]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    16. [16]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    17. [17]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    18. [18]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    19. [19]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    20. [20]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return