Citation: HAN Kui-hua, QI Jian-hui, LI Hui, LIU Hong-tao, LU Chun-mei. Performance of simultaneous desulfurization and denitration using limestone modified by wood vinegar in O2/CO2 coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1378-1383. shu

Performance of simultaneous desulfurization and denitration using limestone modified by wood vinegar in O2/CO2 coal combustion

  • Corresponding author: HAN Kui-hua, 
  • Received Date: 9 March 2013
    Available Online: 26 May 2013

    Fund Project: 国家自然科学基金(51206096)。 (51206096)

  • The performance of simultaneous desulfurization and denitration during coal combustion in O2/CO2 atmosphere with premixed and injected limestone modified by wood vinegar (LMWV) was investigated in a tube furnace and a drop tube furnace, respectively. The SO2 and NO reduction efficiency are 91.0%~94.9% and 23.5%~30.8% respectively during the combustion of coal premixed with LMWV at 1 173 ~ 1 323 K at the Ca/S molar ratio of 2.0. The desulfurization and denitration rates increase with raising the Ca/S molar ratio, and the optimum Ca/S molar ratio is from 1.5 to 2.0. The higher the sulfur content of coal, the greater desulfurization and denitration rates are gained during coal combustion. The performance of desulfurization and denitration with LMWV is better than that with calcium acetate. The maximum desulfurization and denitration rates of 75.8% and 86.6% respectively are gained by injecting LMWV directly into the flue gas of O2/CO2 coal combustion at both 1 223 K and 1 323 K and the Ca/S molar ratio of 2.0 with a residence time of 0.8 s. When the ammonia is injected into the reactive zone at [NH3]/[NO] molar ratio of 0.75, the desulfurization rates are 73.2% and 63.9%, and the denitration rates are 93.2% and 94.8%, respectively at the combustion temperature of 1 223 K and 1 323 K.
  • 加载中
    1. [1]

      [1] CHENG J, ZHOU J H, LIU J Z, ZHOU Z J, HUANG Z Y, CAO X Y, ZHAO X, CEN K F. Sulfur removal at high temperature during coal combustion in furnaces: A review[J]. Prog Energy Combust Sci, 2003, 29(5): 381-405.

    2. [2]

      [2] ANTHONY E J, BULEWICZ E M, JIA L. Reactivation of limestone sorbents in FBC for SO2 capture [J]. Prog Energy Combust Sci, 2007, 33(2): 171-210.

    3. [3]

      [3] 毛玉如, 方梦祥, 王勤辉, 吴学成, 骆仲泱, 倪明江, 岑可法. O2/CO2气氛下循环流化床煤燃烧污染物排放的试验研究[J]. 动力工程, 2004, 24(3): 411-415. (MAO Yu-ru, FANG Meng-xiang, WANG Qin-hui, WU Xue-cheng, LUO Zhong-yang, NI Ming-jiang, CEN Ke-fa. Experimental research on pollutant emission of coal combustion in a circulating fluidized bed test-facility under O2/CO2 atmosphere[J]. Power Engineering, 2004, 24(3): 411-415.)

    4. [4]

      [4] 邹春, 黄志军, 初琨, 桂许龙, 丘纪华, 张立麒, 郑楚光. 燃煤O2/CO2循环燃烧过程中SO2与NOx协同脱除中试研究[J]. 中国电机工程学报, 2009, 29(2): 20-24. (ZOU Chun, HUANG Zhi-jun, CHU Kun, GUI Xu-long, QIU Ji-hua, ZHANG Li-lin, ZHENG Chu-guang. A pilot scale study on SO2 and NOx emission control in O2/CO2 recycled coal combustion[J]. Proceedings of the CSEE, 2009, 29(2): 20-24.)

    5. [5]

      [5] 段伦博, 周骛, 屈成锐, 陈晓平, 赵长遂. O2/CO2气氛下循环流化床煤燃烧SO2排放[J]. 工程热物理学报, 2012, 33(1): 151-154. (DUAN Lun-Bo, ZHOU Wu, QU Cheng-Rui, CHEN Xiao-ping, ZHAO Chang-sui. SO2 emission from a coal-fired circulating fluidized bed combustor under O2/CO2 atmosphere[J]. Journal of Engineering Thermophysics, 2012, 33(1): 151-154.)

    6. [6]

      [6] 武卫芳, 赵长遂, 李英杰, 段伦博, 陈惠超. O2/CO2气氛下醋酸调质石灰石直接硫化实验研究[J]. 中国电机工程学报, 2010, 30(26): 44-49. (WU Wei-fang, ZHAO Chang-sui, LI Ying-jie, DUAN Lun-bo, CHEN Hui-chao. Experimental investigation on direct sulphation characteristics of limestone modified by acetic acid solution under O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2010, 30(26): 44-49.)

    7. [7]

      [7] PATSIAS A A, NIMMO W, GIBBS B M, WILLIAMS P T. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace[J]. Fuel, 2005, 84(14/15): 1864-1873.

    8. [8]

      [8] 肖海平. 有机钙同时脱硫脱硝的机理研究[D]. 杭州: 浙江大学, 2006. (XIAO Hai-ping. Mechanism study of simultaneously control of SO2 and NOx emissions with organic calcium[D]. Hangzhou: Zhejiang University, 2006.)

    9. [9]

      [9] 刘洪涛, 牛胜利, 韩奎华, 路春美. 丙酸钙高温协同脱硫脱硝的试验研究[J]. 煤炭学报, 2010, 35(5): 835-839. (LIU Hong-tao, NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Experimental study on the high-temperature capture of SO2 and NOx by calcium propionate[J]. Journal of China Coal Society, 2010, 35(5): 835-839.)

    10. [10]

      [10] NIU S L, HAN K H, ZHAO J L, LU C M. Experimental study on nitric oxide reduction through calcium propionate reburning[J]. Energy, 2011, 36(2): 1003-1009.

    11. [11]

      [11] 牛胜利. 有机钙盐协同脱除SO2和NO的实验研究与机理分析[D]. 济南: 山东大学, 2011. (NIU Shen-gli. A study on dual reduction of SO2 and NO by calcium based organic compounds through experimental investigation and mechanism analysis[D]. Jinan: Shandong University, 2011.)

    12. [12]

      [12] 刘洪涛, 韩奎华, 刘梦琪, 李辉, 路春美, 李刚. 木醋调质石灰石脱硫脱硝及助燃特性实验研究[J], 煤炭学报, 2012, 37(S2): 466-471. (LIU Hong-tao, HAN Kui-hua, LIU Meng-qi, LI Hui, LU Chun-mei, LI Gang. Experimental study on desulfurization, denitrification and combustion-supporting characteristics of limestone modified by wood vinegar[J]. Journal of China Coal Society, 2012, 37(S2): 466-471.)

    13. [13]

      [13] 刘洪涛, 韩奎华, 李辉, 刘梦琪, 路春美. 木醋调质石灰石固硫性能的动力学研究[J]. 煤炭学报, 2012, 37(11): 1915-1919. (LIU Hong-tao, HAN Kui-hua, LI Hui, LIU Meng-qi, LU Chun-mei. Kinetic analysis on sulfation of limestone modified by wood vinegar[J]. Journal of China Coal Society, 2012, 37(11): 1915-1919.)

    14. [14]

      [14] 刘洪涛, 韩奎华, 路春美, 李辉. O2/CO2气氛下木醋调质石灰石再燃/先进再燃脱硝性能研究[J]. 燃料化学学报, 2013, 41(2): 228-234. (LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 228-234.)

    15. [15]

      [15] 刘洪涛, 韩奎华, 路春美. O2/CO2气氛下木醋调质石灰石直接硫化反应动力学研究[J]. 燃料化学学报, 2012, 40(12): 1505-1511. (LIU Hong-tao, HAN Kui-hua, LU Chun-mei. Kinetic study on direct sulfation reaction of limestone modified by wood vinegar under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1505-1511.)

    16. [16]

      [16] 侯祥松, 李金平, 张海, 赵石铁, 吕俊复, 岳光溪. 石灰石脱硫对循环流化床中NOx生成和排放的影响[J]. 电站系统工程, 2005, 27(1): 5-7, 16. (HOU Xiang-song, LI Jin-ping, ZHANG Hai, ZHAO Shi-tie, LV Jun-fu, YUE Guang-xi. Limestone effects on NOx formation & emission in CFB Combustors[J]. Power System Engineering, 2005, 27(1): 5-7, 16.)

    17. [17]

      [17] HAMPARTSOUMIAN E, NIMMO W, GIBBS B M. Nitrogen sulphur interactions in coal flames[J]. Fuel, 2001, 80(7): 887-897.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    19. [19]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(0)
  • Abstract views(285)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return