Citation:
ZHOU Jin-song, QI Pan, HOU Wen-hui, You Shu-lin, GAO Xiang, LUO Zhong-yang. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(11): 1371-1377.
-
Nano-ZnO sorbents synthesized by a homogeneous precipitation method were characterized by BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction) as well as XPS (X-ray photoelectron spectroscopy) analysis. The adsorption of elemental mercury by nano-ZnO under nitrogen and simulated gas atmosphere was studied on a bench-scale fixed-bed apparatus. The effect of various gases on Hg0 removal performance by nano-ZnO was analyzed. The results show that the mercury removal efficiency of the nano-ZnO is relatively poor in nitrogen atmosphere. The presence of H2S promotes the Hg0 removal by nano-ZnO observably and the mercury removal efficiency can be maintained for a long time even after stopping pass into H2S. The presence of CO and H2 promotes the Hg0 removal because of desulfurization effect of nano-ZnO. As the temperature increases, the formation of elemental sulfur in the surface of the nano-ZnO decreases, which can suppress the removal of Hg0 by sorbent.
-
Keywords:
- elemental mercury,
- nano-ZnO,
- removal efficiency,
- gas atmosphere
-
-
-
[1]
[1] 张亮, 禚玉群, 杜雯, 陶叶, 陈昌和, 徐旭常. 非碳基改性吸附剂汞脱除性能实验研究[J]. 中国电机工程学报, 2010, 30(17): 27-34. (ZHANG Liang, ZHUO Yu-qun, DU Wen, TAO Ye, CHEN Chang-he, XU Xu-chang. Experimental study on mercury removal efficiencies of modified non-carbon sorbens[J]. Proceedings of the CSEE, 2010, 30(17): 27-34.)
-
[2]
[2] PIRRONE N, CINNIRELLA S, FENG X, FINKELMAN R B, FRIEDLI H R, LEANER J, MUKHERJEE A B, STRACHER G B, STREETS G, TELMER K. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmos Chem Phys, 2010, 10(13): 5951-5964.
-
[3]
[3] 赵建涛, 黄戒介, 卫小芳, 房倚天, 王洋. 钛酸锌高温煤气脱硫剂硫化再生性能的研究[J]. 燃料化学学报, 2007, 35(1): 66-71. (ZHAO Jian-tao, HUANG Jie-jie, WEI Xiao-fang, FANG Yi-tian, WANG Yang. Regeneration characteristics of sulfide zinc titanate sorbent for hot gas cleaning[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 66-71.)
-
[4]
[4] 吕学勇. 复合金属氧化物在还原气氛中同时脱除单质汞和硫化氢的研究[D]. 太原: 太原理工大学, 2012. (LV Xue-jun. Mixed metallic oxide sorbents for simultaneous capture of hydrogen sulfide and mercury from reducing atmosphere[D]. Taiyuan: Taiyuan University of Technology, 2012.)
-
[5]
[5] WANG J C, ZHANG Y P, HAN L N, CHANG L P, BAO W R. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents[J]. Fuel, 2013, 103: 73-79.
-
[6]
[6] 米亮亮, 赵永椿, 张军营, 郑楚光. 改性ZnFeO4吸附剂煤气脱汞实验研究[J]. 工程热物理学报, 2013, 34(2): 384-387. (MI Liang-liang, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Retention of mercury from coal gas using modified zinc ferrite adsorbent[J]. Journal of Engineering Thermophysics, 2013, 34(2): 384-387.)
-
[7]
[7] PINEDA M, PALACIOS J M, ALONSO L, GARACIA E, MOLINER R. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle test in a fixed-bed reactor[J]. Fuel, 2000, 79(8): 885-895.
-
[8]
[8] 井立强, 郑莹光, 徐自力, 董凤霞, 孙晓君, 蔡伟民, 徐英凯. ZnO超微粒子的EPR特性和光催化性能[J]. 高等学校化学学报, 2001, 22(11): 1885-1888. (JING Li-qiang, ZHENG Ying-guang, XU Zi-li, DONG Feng-xia, SUN Xiao-jun, CAI Wei-ming, XU Ying-kai. Electronic paramagnetic resonance characteristic of ZnO ultrafine particles and their photocatalytic performance[J]. Chemical Journal of Chinese Universities, 2001, 22(11): 1885-1888.)
-
[9]
[9] 杨秋景, 徐自力, 谢超, 薛宝永, 杜尧国, 张家骅. 铕掺杂对纳米TiO2的光催化活性的影响[J]. 高等学校化学学报, 2004, 25(9): 1711-1714. (YANG Qiu-jing, XU Zi-li, XIE Chao, XUE Bao-yong, DU Yao-guo, ZHANG Jia-hua. Effect of Eu3+doping on the photocatalytic activity of nanoparticles TiO[J]. Chemical Journal of Chinese Universities, 2004, 25(9): 1711-1714.)
-
[10]
[10] 邵纯红, 姜安玺, 李芬, 闫波, 周百斌. 纳米ZnO脱硫剂表面结构与室温脱除H2S性能的研究[J]. 无机化学学报, 2005, 21(8): 1149 -1154. (SHAO Chun-hong, JIANG An-xi, LI Fen, YAN Bo, ZHOU Bai-bin. ZnO nanoparticles: Surface structure and desulfurization performance for H2S at room temperature[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(8): 1149 -1154.)
-
[11]
[11] JADHAV R A, HOWARD M S, WINECKI S. Evaluation of nanocrystalline sorbents for mercury removal from coal gasifier fuel gas[C]//2005 AIChE Annual Meeting and Fall Showcase. Cincinnati, USA, 2005: 5526-5531.
-
[12]
[12] 孔凡海. 铁基纳米吸附剂烟气脱汞实验及机理研究[D]. 武汉: 华中科技大学, 2010. (KONG Fan-hai. Experimental and mechanism study of elemental mercury removal in flue gas of Fe-based nano-sorbent[D]. Wuhan: Huazhong University of Science & Technology, 2010.)
-
[13]
[13] 邵纯红, 姜安玺, 李芬, 闫波, 周百斌. 纳米ZnO室温选择氧化H2S特性的研究[J]. 燃料化学学报, 2005, 33(4): 470-473. (SHAO Chun-hong, JIANG An-xi, LI Fen, YAN Bo, ZHOU Bai-bin. Study on selective oxidation of H2S with nanometer ZnO at room temperature[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 470-473.)
-
[14]
[14] WU S J, UDDIN M A, SASAOKA E. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J].Fuel, 2006, 85(2): 213-218.
-
[15]
[15] EOM Y, JEON S, NGO T, KIM J, LEE T G. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121: 219-225.
-
[16]
[16] RODRIGUEZ J A, JIRSAK T, CHATURVEDI S, HRBEK J. The interaction of H2S and S2 with Cs and Cs/ZnO surfaces: Photoemission and molecular-orbital studies[J]. Surf Sci, 1998, 407: 171-188.
-
[17]
[17] STEIJINS M, MARSS P. Catalytic oxidation of hydrogen surlfide. Influence of pore structure and chemical composition of various porous substances[J]. Ind Eng Chem Prod Res Dev, 1977, 16(1): 35-41.
-
[18]
[18] 尾崎萃, 田丸谦二. 催化剂手册[M]. 北京: 化学工业出版社, 1982. 117. (WEI Q C, TIAN W Q E. Handbook of catalyst[M]. Beijing: Chemical Industry Press, 1982. 117.)
-
[19]
[19] 樊惠玲, 郭汉贤, 李春虎, 谢克昌. 一氧化碳和氧对氧化锌脱硫行为的影响[J]. 复旦学报(自然科学版), 2003, 42(3): 274-279. (FAN Hui-ling, GUO Han-xian, LI Chun-hu, XIE Ke-chang. Effect of CO and O2 on the desulfurization of ZnO[J]. Journal of Fudan University(Natural Science), 2003, 42(3): 274-279.)
-
[20]
[20] 金国杰, 樊惠玲, 李春虎, 郭汉贤. 氧化锌脱硫中氢和氧的双气氛效应及动力学研究[J]. 燃料化学学报, 2003, 31(4): 328-332. (JIN Guo-jie, FAN Hui-ling, LI Chun-hu, GUO Han-xian. Effect of H2 and O2 on the desulfurization over zinc oxide and its kinetic study[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 328-332.)
-
[1]
-
-
-
[1]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[2]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[3]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[4]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[5]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[6]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[7]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[8]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[11]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[12]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[15]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[16]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[17]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[20]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(370)
- HTML views(40)