Citation: ZHOU Jin-song, QI Pan, HOU Wen-hui, You Shu-lin, GAO Xiang, LUO Zhong-yang. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1371-1377. shu

Elemental mercury removal from syngas by nano-ZnO sorbent

  • Corresponding author: ZHOU Jin-song, 
  • Received Date: 10 July 2013
    Available Online: 29 August 2013

    Fund Project: 国家自然科学基金(51176171)。 (51176171)

  • Nano-ZnO sorbents synthesized by a homogeneous precipitation method were characterized by BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction) as well as XPS (X-ray photoelectron spectroscopy) analysis. The adsorption of elemental mercury by nano-ZnO under nitrogen and simulated gas atmosphere was studied on a bench-scale fixed-bed apparatus. The effect of various gases on Hg0 removal performance by nano-ZnO was analyzed. The results show that the mercury removal efficiency of the nano-ZnO is relatively poor in nitrogen atmosphere. The presence of H2S promotes the Hg0 removal by nano-ZnO observably and the mercury removal efficiency can be maintained for a long time even after stopping pass into H2S. The presence of CO and H2 promotes the Hg0 removal because of desulfurization effect of nano-ZnO. As the temperature increases, the formation of elemental sulfur in the surface of the nano-ZnO decreases, which can suppress the removal of Hg0 by sorbent.
  • 加载中
    1. [1]

      [1] 张亮, 禚玉群, 杜雯, 陶叶, 陈昌和, 徐旭常. 非碳基改性吸附剂汞脱除性能实验研究[J]. 中国电机工程学报, 2010, 30(17): 27-34. (ZHANG Liang, ZHUO Yu-qun, DU Wen, TAO Ye, CHEN Chang-he, XU Xu-chang. Experimental study on mercury removal efficiencies of modified non-carbon sorbens[J]. Proceedings of the CSEE, 2010, 30(17): 27-34.)

    2. [2]

      [2] PIRRONE N, CINNIRELLA S, FENG X, FINKELMAN R B, FRIEDLI H R, LEANER J, MUKHERJEE A B, STRACHER G B, STREETS G, TELMER K. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmos Chem Phys, 2010, 10(13): 5951-5964.

    3. [3]

      [3] 赵建涛, 黄戒介, 卫小芳, 房倚天, 王洋. 钛酸锌高温煤气脱硫剂硫化再生性能的研究[J]. 燃料化学学报, 2007, 35(1): 66-71. (ZHAO Jian-tao, HUANG Jie-jie, WEI Xiao-fang, FANG Yi-tian, WANG Yang. Regeneration characteristics of sulfide zinc titanate sorbent for hot gas cleaning[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 66-71.)

    4. [4]

      [4] 吕学勇. 复合金属氧化物在还原气氛中同时脱除单质汞和硫化氢的研究[D]. 太原: 太原理工大学, 2012. (LV Xue-jun. Mixed metallic oxide sorbents for simultaneous capture of hydrogen sulfide and mercury from reducing atmosphere[D]. Taiyuan: Taiyuan University of Technology, 2012.)

    5. [5]

      [5] WANG J C, ZHANG Y P, HAN L N, CHANG L P, BAO W R. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents[J]. Fuel, 2013, 103: 73-79.

    6. [6]

      [6] 米亮亮, 赵永椿, 张军营, 郑楚光. 改性ZnFeO4吸附剂煤气脱汞实验研究[J]. 工程热物理学报, 2013, 34(2): 384-387. (MI Liang-liang, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Retention of mercury from coal gas using modified zinc ferrite adsorbent[J]. Journal of Engineering Thermophysics, 2013, 34(2): 384-387.)

    7. [7]

      [7] PINEDA M, PALACIOS J M, ALONSO L, GARACIA E, MOLINER R. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle test in a fixed-bed reactor[J]. Fuel, 2000, 79(8): 885-895.

    8. [8]

      [8] 井立强, 郑莹光, 徐自力, 董凤霞, 孙晓君, 蔡伟民, 徐英凯. ZnO超微粒子的EPR特性和光催化性能[J]. 高等学校化学学报, 2001, 22(11): 1885-1888. (JING Li-qiang, ZHENG Ying-guang, XU Zi-li, DONG Feng-xia, SUN Xiao-jun, CAI Wei-ming, XU Ying-kai. Electronic paramagnetic resonance characteristic of ZnO ultrafine particles and their photocatalytic performance[J]. Chemical Journal of Chinese Universities, 2001, 22(11): 1885-1888.)

    9. [9]

      [9] 杨秋景, 徐自力, 谢超, 薛宝永, 杜尧国, 张家骅. 铕掺杂对纳米TiO2的光催化活性的影响[J]. 高等学校化学学报, 2004, 25(9): 1711-1714. (YANG Qiu-jing, XU Zi-li, XIE Chao, XUE Bao-yong, DU Yao-guo, ZHANG Jia-hua. Effect of Eu3+doping on the photocatalytic activity of nanoparticles TiO[J]. Chemical Journal of Chinese Universities, 2004, 25(9): 1711-1714.)

    10. [10]

      [10] 邵纯红, 姜安玺, 李芬, 闫波, 周百斌. 纳米ZnO脱硫剂表面结构与室温脱除H2S性能的研究[J]. 无机化学学报, 2005, 21(8): 1149 -1154. (SHAO Chun-hong, JIANG An-xi, LI Fen, YAN Bo, ZHOU Bai-bin. ZnO nanoparticles: Surface structure and desulfurization performance for H2S at room temperature[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(8): 1149 -1154.)

    11. [11]

      [11] JADHAV R A, HOWARD M S, WINECKI S. Evaluation of nanocrystalline sorbents for mercury removal from coal gasifier fuel gas[C]//2005 AIChE Annual Meeting and Fall Showcase. Cincinnati, USA, 2005: 5526-5531.

    12. [12]

      [12] 孔凡海. 铁基纳米吸附剂烟气脱汞实验及机理研究[D]. 武汉: 华中科技大学, 2010. (KONG Fan-hai. Experimental and mechanism study of elemental mercury removal in flue gas of Fe-based nano-sorbent[D]. Wuhan: Huazhong University of Science & Technology, 2010.)

    13. [13]

      [13] 邵纯红, 姜安玺, 李芬, 闫波, 周百斌. 纳米ZnO室温选择氧化H2S特性的研究[J]. 燃料化学学报, 2005, 33(4): 470-473. (SHAO Chun-hong, JIANG An-xi, LI Fen, YAN Bo, ZHOU Bai-bin. Study on selective oxidation of H2S with nanometer ZnO at room temperature[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 470-473.)

    14. [14]

      [14] WU S J, UDDIN M A, SASAOKA E. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J].Fuel, 2006, 85(2): 213-218.

    15. [15]

      [15] EOM Y, JEON S, NGO T, KIM J, LEE T G. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121: 219-225.

    16. [16]

      [16] RODRIGUEZ J A, JIRSAK T, CHATURVEDI S, HRBEK J. The interaction of H2S and S2 with Cs and Cs/ZnO surfaces: Photoemission and molecular-orbital studies[J]. Surf Sci, 1998, 407: 171-188.

    17. [17]

      [17] STEIJINS M, MARSS P. Catalytic oxidation of hydrogen surlfide. Influence of pore structure and chemical composition of various porous substances[J]. Ind Eng Chem Prod Res Dev, 1977, 16(1): 35-41.

    18. [18]

      [18] 尾崎萃, 田丸谦二. 催化剂手册[M]. 北京: 化学工业出版社, 1982. 117. (WEI Q C, TIAN W Q E. Handbook of catalyst[M]. Beijing: Chemical Industry Press, 1982. 117.)

    19. [19]

      [19] 樊惠玲, 郭汉贤, 李春虎, 谢克昌. 一氧化碳和氧对氧化锌脱硫行为的影响[J]. 复旦学报(自然科学版), 2003, 42(3): 274-279. (FAN Hui-ling, GUO Han-xian, LI Chun-hu, XIE Ke-chang. Effect of CO and O2 on the desulfurization of ZnO[J]. Journal of Fudan University(Natural Science), 2003, 42(3): 274-279.)

    20. [20]

      [20] 金国杰, 樊惠玲, 李春虎, 郭汉贤. 氧化锌脱硫中氢和氧的双气氛效应及动力学研究[J]. 燃料化学学报, 2003, 31(4): 328-332. (JIN Guo-jie, FAN Hui-ling, LI Chun-hu, GUO Han-xian. Effect of H2 and O2 on the desulfurization over zinc oxide and its kinetic study[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 328-332.)

  • 加载中
    1. [1]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(370)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return