Citation: ZHANG Ping, LI Lu, YU Feng-li, XIE Cong-xia, YU Shi-tao, LIU Shi-wei, LIU Fu-sheng. Preparation of SO42-/ZrO2 catalyst and its performance in the esterification of pyrolytic rubber seed oil[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(11): 1322-1327. shu

Preparation of SO42-/ZrO2 catalyst and its performance in the esterification of pyrolytic rubber seed oil

  • Corresponding author: YU Shi-tao, 
  • Received Date: 8 May 2013
    Available Online: 21 July 2013

    Fund Project: "十二五"农村领域国家科技计划(2011BAD22B05) (2011BAD22B05)无机合成与制备化学国家重点实验室(吉林大学)开发课题(2011-18) (吉林大学)开发课题(2011-18)青岛市应用基础项目(10-3-4-1-jch) (10-3-4-1-jch)山东省高等学校科技计划项目(J11LB05)。 (J11LB05)

  • Esterification of pyrolytic rubber seed oil with SO42-/ZrO2 soild acid as catalyst was investigated; the effects of zirconium sources, calcination time and temperature on the catalytic performance were considered. The acidic properties of the SO42-/ZrO2 catalyst were characterized by temperature-programmed desorption of ammonia (NH3-TPD) and pyridine adsorption infrared spectroscopy (Py-IR). The results indicated that the SO42-/ZrO2 solid acid prepared by using ZrOCl2 as zirconium source and calcined at 550℃ for 4 h exhibits high catalytic activity and stability in the esterification of the pyrolytic rubber seed oil. The esterification product obtained as a bio-oil was superior to those prepared via conventional methods; its properties are similar to those of 0# diesel oil.
  • 加载中
    1. [1]

      [1] 刘守庆, 李雪梅, 敖新宇, 刘祥义, 陈玉惠. 橡胶籽油制备生物柴油的工艺研究[J]. 可再生能源, 2010, 28(5): 72-75. (LIU Shou-qing, LI Xue-mei, AO Xin-yu, LIU Xiang-yi, CHEN Yu-hui. Study on the technology for biodiesel production with Rubber Seed oil as feedstock[J]. Renewable Energy Resources, 2010, 28(5): 72-75.)

    2. [2]

      [2] LIMAA D G, SOARES V C D, RIBEIRO E B,CARVALHO D A, CARDOSO E C V,MONDIM K C, RUBIM J C,SUAREZ P A Z. Diesel-like fuel obtained by pyrolysis of vegetable oils[J]. J Anal Appl Pyrolysis, 2004, 71(2): 987-996.

    3. [3]

      [3] XU J M, JIANG J C,CHEN J, SUN Y X. Biofuel production from catalytic cracking of woody oils[J]. Bioresour Technol, 2010, 101(14): 5586-5591.

    4. [4]

      [4] CHUNG K H, CHANG D R, PARK B G. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts[J]. Bioresour Technol, 2008, 99(16): 7438-7443.

    5. [5]

      [5] PENG J, CHEN P, LOU H, ZHENG X M. Upgrading of bio-oil over aluminum silicate in supercritical ethanol[J]. Energy Fuels, 2008, 22(5): 3489-3492.

    6. [6]

      [6] MARCHETTI J M, ERRAZU A F. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides[J]. Biomass Bioenergy, 2008, 32(9): 892-895.

    7. [7]

      [7] EAWARD C. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties[J].Process Biochem, 2001, 37(1): 65-71.

    8. [8]

      [8] MACHAEL J. Haas improving the economics of biodiesel production though the use of low value lipids as feedstocks: Vegetable oil soap stock[J]. Fuel Process Technol, 2005, 86(10): 1087-1096.

    9. [9]

      [9] 李秀凤, 包桂蓉, 王华. 固体酸SO42-/ZrO2-Ce催化小桐子油脂肪酸制备生物柴油的实验研究[J]. 燃料化学学报, 2012, 40(1): 37-42. (LI Xiu-feng, BAO Gui-rong, WANG Hua. Biodiesel production from Jatropha curcas L. fatty acids using solid acid SO42-/ZrO2-CeO2 as catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 37-42.)

    10. [10]

      [10] 陈颖, 孙雪, 李慧, 白云波. 稀土改性对SO42-/ZrO2固体酸催化剂结构与催化活性的影响[J]. 燃料化学学报, 2012, 40(4): 412-417. (CHEN Ying, SUN Xue, LI Hui, BAI Yun-bo. Effect of rare earth modification on structure and catalytic properties of SO42-/ZrO2 solid acid catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 412-417.)

    11. [11]

      [11] WANG Y H, DONG S X, LU G Z. Structure and catalytic properties of SO42-/ZrO2 catalyst modified by different rare earth compounds[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 677-682.

    12. [12]

      [12] 陈崇城, 陈航榕, 俞建长, 叶争青, 施剑林. 多级孔WO3/ZrO2固体酸催化剂的制备与表征[J]. 催化学报, 2011, 32(4): 647-651. (CHEN Chong-cheng, CHEN Hang-rong, YU Jian-chang, YE Zheng-qing, SHI Jian-lin. Preparation and characterization of WO3/ZrO2 solid acid catalyst with hierarchlly porous structure[J]. Chinese Journal of Catalysis, 2011, 32(4): 647-651.)

    13. [13]

      [13] EMEIS C A. Determination of integrated molar of coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysis[J]. J Catal, 1993, 141(2): 347-354.

    14. [14]

      [14] GLAZUNOV V P, ODINOKOV S E. Infrared spectra of pyridinium salts in solution-Ⅰ.The region of middle frequencies[J]. Spectrochim Acta A, 1982, 38(4): 399-408.

    15. [15]

      [15] 唐庆余. 红外光谱测定固体酸催化剂表面酸性[J]. 石油与化工, 2004, 15(4): 28-29. (TANG Qing-yu. Determination of surface acidity of solid-acid catalysts by FT-IR[J]. Refining and Chemical Industry, 2004, 15(4): 28-29.)

    16. [16]

      [16] 申延明, 戎梅竹, 刘宏伟, 吴静. SO42-/ZrO2固体超强酸的制备及其催化合成ETBE的研究[J]. 石油炼制与化工, 2006, 37(8): 12-15. (SHEN Yan-ming, RONG Mei-zhu, LIU Hong-wei, WU Jing. Study on preparation of SO42-/ZrO2 solid superacid catalyst and its catalytic performance in ETBE synthesis[J]. Petroleum Processing and Petrochemicals, 2006, 37(8): 12-15.)

    17. [17]

      [17] 王知彩, 水恒福, 裴占宁, 高晋生. SO42-/ZrO2酸性及其催化液化性能研究[J]. 燃料化学学报, 2008, 36(1): 10-14. (WANG Zhi-cai, SHUI Heng-fu, PEI Zhan-ning, GAO Jin-sheng. Acidity and catalytic property of SO42-/ZrO2 on the hydro-liquefaction of coal[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 10-14.)

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(0)
  • Abstract views(395)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return