Citation: LI Yong, LI Lei, WEN Xia, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1122-1128. shu

Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method

  • Corresponding author: WEI Wei, 
  • Received Date: 12 February 2013
    Available Online: 9 April 2013

    Fund Project: 国家自然科学基金(20906099) (20906099)中国科学院战略性先导科技专项(XDA05010109、XDA05010110、XDA05010204)。 (XDA05010109、XDA05010110、XDA05010204)

  • A series of amine modified SBA-15 was prepared by a twice grafting method for CO2 capture. The resulted materials were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetry (TG), elemental analysis, transmission electron microscopy (TEM) and Flourier transform infrared (FT-IR) spectrometry. CO2 adsorption capacity of the adsorbents was obtained in a fixed bed through a breakthrough curve method. Effects of different preparation methods and different types of grafted organic amines were studied and recycled adsorption/desorption testing was carried out to evaluate the stability of the adsorbents. The results showed that, polyethylenimine(PEI) grafted SBA-15 prepared by supersonic method showed the best adsorption capacity, the optimist result was 1.72 mmol/g at 25 ℃ and 10 kPa CO2 partial pressure. Furthermore, its adsorption capacity was found to be remaining constant after multiple adsorption/desorption cycles, indicating the high thermal stability of this adsorbent.
  • 加载中
    1. [1]

      [1] FIGUEROA J D, FOUT T, PLASYNSKI S, MCILVRIED H, SRIVASTAVA R D. Advances in CO2 capture technology-The U.S. department of energy's carbon sequestration program[J]. Int J Green Gas Con, 2008, 2(1): 9-20.

    2. [2]

      [2] HASZELDINE R S. Carbon capture and storage: How green can black be?[J] Sci, 2009, 325(5948): 1647-1652.

    3. [3]

      [3] 黄黎明, 陈赓良. 二氧化碳的回收利用与捕集储存[J]. 石油天然气化工, 2006, 35(5): 453. (HUANG Li-ming, CHEN Geng-liang. The recovery, ultilization, capture and storage of carbon dioxide[J]. Chemcal Engineering of Oil & Gas, 2006, 35(5): 453.)

    4. [4]

      [4] TONTIWACHWUTHIKUL P, MEISEN A, LIM C J. Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions[J]. J Chem Eng Data, 1991, 36(1): 130-133.

    5. [5]

      [5] PLAZA M G, PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. CO2 capture by adsorption with nitrogen enriched carbons[J]. Fuel, 2007, 86(14): 2204-2212.

    6. [6]

      [6] DANTAS T L P, AMORIM S M, LUNA F M T, SILVA I J, AZEVEDO D C S, RODRIGUES A E, MOREIRA R. Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: Surface changes, equilibrium, and modeling of fixed-bed adsorption[J]. Sep Sci Technol, 2010, 45(1): 73-84.

    7. [7]

      [7] HAO G P, LI W C, QIAN D, LU A H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Adv Mater (Weinheim, Ger), 2010, 22(7): 853-857.

    8. [8]

      [8] YANG H, GONG M C, CHEN Y Q. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2[J]. J Nat Gas Chem, 2011, 20(5): 460-464.

    9. [9]

      [9] 简相坤, 刘石彩, 边轶. 活性炭对CO2的吸附与解吸研究进展[J]. 生物质化学工程, 2012, 46(3): 20-26. (JIAN Xiang-kun, LIU Shi-cai, BIAN Yi. Research progress of adsorption and desorption of CO2 on activated carbon[J]. Biomass Chemical Engineering, 2012, 46(3): 20-26.)

    10. [10]

      [10] KHELIFA A, BENCHEHIDA L, DERRICHE Z. Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: Isotherms and isosteric heat[J]. J Colloid Interface Sci, 2004, 278(1): 9-17.

    11. [11]

      [11] SIRIWARDANE R V, SHEN M S, FISHER E P. Adsorption of CO2 on zeolites at moderate temperatures[J]. Energy Fuels, 2005, 19(3): 1153-1159.

    12. [12]

      [12] SHAO W, ZHANG L Z, LI L X, LEE R L. Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures[J]. Adsorpt, 2009, 15(5/6): 497-505.

    13. [13]

      [13] 王宝品. 分子筛在烟气净化中的应用[J]. 河北化工, 2012, 35(6): 69-71. (WANG Bao-pin. Application of molecular sieve in the flue gas purification[J]. Hebei Chemical Industry, 2012, 35(6): 69-71.)

    14. [14]

      [14] REDDY M K R, XU Z P, LU G Q, COSTA J C D. Layered double hydroxides for CO2 capture: Structure evolution and regeneration[J]. Ind Eng Chem Res, 2006, 45(22): 7504-7509.

    15. [15]

      [15] WANG X P, YU J J, CHENG J, HAO Z P, XU Z P. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds[J]. Environ Sci Technol, 2008, 42(2): 614-618.

    16. [16]

      [16] LEON M, DIAZ E, BENNICI S, VEGA A, ORDONEZ S, AUROUX A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility[J]. Ind Eng Chem Res, 2010, 49(8): 3663-3671.

    17. [17]

      [17] FU X, ZHAO N, LI J P, XIAO F K, WEI W, SUN Y H. Carbon dioxide capture by MgO-modified MCM-41 materials[J]. Adsorpt Sci Technol, 2009, 27(6): 593-601.

    18. [18]

      [18] LI L, WEN X, FU X, WANG F, ZHAO N, XIAO FK, WEI W, SUN YH. MgO/Al2O3 sorbent for CO2 capture[J]. Energy Fuels, 2010, 24(10): 5773-5780.

    19. [19]

      [19] LI L, LI Y, WEN X, WANG F, ZHAO N, XIAO F, WEI W, SUN Y. CO2 capture over K2CO3/MgO/Al2O3 dry sorbent in a fluidized bed[J]. Energy Fuels, 2011, 25(8): 3835-3842.

    20. [20]

      [20] 李碧,闻霞, 赵宁, 王秀枝, 魏 伟, 孙予罕, 任泽厚, 王志杰. 高稳定性介孔MgO-ZrO2固体碱的制备及其高温CO2吸附性能[J]. 燃料化学学报, 2010, 38(4): 473-477. (LI Bi, WEN Xia, ZHAO Ning, WANG Xiu-zhi, WEI Wei, SUN Yu-han, REN Ze-hou, WANG Zhi-jie. Preparation of high stability MgO-ZrO2 solid base and its high temperature CO2 capture properties[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 473-477.)

    21. [21]

      [21] 闻霞, 孙楠楠, 李碧, 李军平, 王峰, 赵宁, 肖福魁, 魏伟, 孙予罕, 任泽厚, 郭金刚, 王志杰, 李庆, 吴志斌. MgO/Al2O3吸附剂对CO2动态吸附性能的研究[J]. 燃料化学学报, 2010, 38(2): 247-251. (WEN Xia, SUN Nan-nan, LI Bi, LI Jun-ping, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEIWei, SUN Yun-han, REN Ze-hou, GUO Jin-gang, WANG Zhi-jie, LI Qing, WU Zhi-bin. Dynamic adsorption study of CO2 adsorption by MgO/Al2O3[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 247-251.)

    22. [22]

      [22] VITILLO J G, SAVONNET M, RICCHIARDI G, BORDIGA S. Tailoring metal-organic frameworks for CO2 capture: The amino effect[J]. Chem Sus Chem, 2011, 4(9): 1281-1290.

    23. [23]

      [23] WANG X R, LI H Q, HOU X J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO[J]. J Phys Chem C, 2012, 116(37): 19814-19821.

    24. [24]

      [24] HIYOSHI N,YOGO K,YASHIMA T. Adsorption of carbon dioxide on aminosilane-modified mesoporous silica[J]. J Jpn Pet Inst, 2005, 48(1): 29-36.

    25. [25]

      [25] KHATRI RA,CHUANG SSC, SOONG Y, GRAY M. Carbon dioxide capture by diamine-grafted SBA-15: A combined fourier transform infrared and mass spectrometry study[J]. Ind Eng Chem Res, 2005, 44(10): 3702-3708.

    26. [26]

      [26] WANG L, YANG R T, increasing selective. CO2 adsorption on amine-grafted SBA-15 by increasing silanol density[J]. J Phys Chem C, 2011, 115(43): 21264-21272.

    27. [27]

      [27] YAN X L, ZHANG L, ZHANG Y, YANG G D, YAN Z F. Amine-modified SBA-15: Effect of pore structure on the performance for CO2 capture[J]. Ind Eng Chem Res, 2011, 50(6): 3220-3226.

    28. [28]

      [28] QI G G, FU L L, CHOI B H, GIANNELIS E P. Efficient CO2 sorbents based on silica foam with ultra-large mesopores[J]. Energy Environ Sci, 2012, 5(6): 7368-7375.

    29. [29]

      [29] YUE M B, SUN L B, CAO Y, WANG Y, WANG Z J, ZHU J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J]. Chem Eur J, 2008, 14(11): 3442-3451.

    30. [30]

      [30] XU X C, SONG C S, ANDRESEN J M, MILLER B G, SCARONI A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy Fuels, 2002, 16(6): 1463-1469.

    31. [31]

      [31] 王林芳, 马磊, 王爱琴, 刘茜, 张涛. 氨基硅烷修饰的SBA-15用于CO2的吸附[J]. 催化学报, 2007, 28(9): 805-810. (WANG Lin-fang, MA Lei, WANG Ai-qin, LIU Qian, ZHANG Tao. CO2 adsorption on SBA-15 modified by aminosilane[J]. Chinese Journal of Catalysis, 2007, 28(9): 805-810.)

    32. [32]

      [32] 岳明波, 朱建华. 从介孔分子筛原粉研制高效吸附二氧化碳的有机胺介孔复合材料[J]. 催化学报, 2008, 29(10): 1051-1057. (YUE Ming-bo, ZHU Jian-hua. Efficient CO2 capturer derived from as-synthesized mesoporous silica modified with amines[J]. Chinese Journal of Catalysis, 2008, 29(10): 1051-1057.)

    33. [33]

      [33] 付新, 李军平, 赵宁, 肖福魁, 魏伟, 孙予罕. 氨基修饰的介孔分子筛对CO2的吸附性能[J]. 石油化工, 2008, 37(10): 1021-1025. (FU Xin, LI Jun-ping, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. CO2 adsorption on mesoporous molecular sieves modified by aminosiliane[J].Petrochemical Technology, 2008, 37(10): 1021-1025.)

    34. [34]

      [34] 王亚坤, 赵瑞红, 冯晓霞, 张伟, 李肖飞. 氨基化有序介孔氧化铝合成及吸附CO2性能研究[J]. 材料导报, 2012, 26(8): 71-74. (WANG Ya-kun,ZHAO Rui-hong,FENG Xiao-xia,ZHANG Wei,LI Xiao-fei. Study on synthesis of amino-functionalized organized mesoporous alumina and their CO2 adsorption properities[J]. Materials Review, 2012, 26(8): 71-74.)

    35. [35]

      [35] 赵会民, 林丹, 杨刚, 淳远, 须沁华. 有机胺修饰具有较大孔径介孔材料的二氧化碳吸附性能[J]. 物理化学学报, 2012, 28(4): 985-992. (ZHAO Hui-min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-hua.Adsorption capacity of carbon dioxide on amine modified mesoporous materials with larger pore sizes[J]. Acta Physico-Chimica Sinica, 2012, 28(4): 985-992.)

    36. [36]

      [36] GOEPPERT A, METH S, PRAKASH G K S, OLAH G A. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents\[J]. Energy Environ Sci, 2010, 3(12): 1949-1960.

    37. [37]

      [37] ZHAO D Y, FENG J L, HUO Q S, MELOSH N, FREDRICKSON G H, CHMELKA B F, stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.

    38. [38]

      [38] LIU Y M, SHI J J, CHEN J, YE Q, PAN H, SHAO Z H, SHI Y. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6[J]. Microporous Mesoporous Mater, 2010, 134(1/3): 16-21.

    39. [39]

      [39] HIYOSHI N, YOGO K, YASHIMA T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J]. Microporous Mesoporous Mater, 2005, 84(1/3): 357-365.

    40. [40]

      [40] BADANICOVA M, ZELENAK V. Organo-modified mesoporous silica for sorption of carbon dioxide[J]. Monatsh Chem, 2010, 141(6): 677-684.

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(567)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return