Citation: ZHANG Hai-yong, WANG Yong-gang, ZHANG Pei-zhong, LIN Xiong-chao, ZHU Yu-fei. Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal tar[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(9): 1085-1091. shu

Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal tar

  • Corresponding author: WANG Yong-gang, 
  • Received Date: 27 April 2013
    Available Online: 18 June 2013

    Fund Project: National Natural Science Foundation of China (U1261213) (U1261213)the National High-Tech R&D Program of China (863 Program, 2011AA05A203). (863 Program, 2011AA05A203)

  • γ-alumina supported Ni-W catalysts with different zeolite Y contents were prepared and characterized by N2 sorption, XRD, H2-TPR and NH3-TPD. Their catalytic activities were investigated on a trickle bed reactor by hydroprocessing cresol-naphthalene model compounds in n-heptane solution. The results show that all the catalysts exhibit excellent hydrodeoxygenation and hydrogenation activities, while the isomerization and ring-opening products increase with the addition of zeolite, and trans-decalin is preferred with acid sites. A better catalyst was selected for hydroprocessing a low temperature coal tar fraction and the product oil was analyzed by GC-MS and elementary analysis. Phenols and di-aromatics in the tar are almost converted into indans, cycloalkanes and hydro-aromatics. In the meantime, heteroatoms, especially S and O atoms, reduce remarkably.
  • 加载中
    1. [1]

      [1] SAYAN S, PAUL J. Hydrogenation of naphthalene and methylnaphthalene: modeling and spectroscopy[J]. J Mol Catal A: Chem, 2002, 185(1/2): 211-222.

    2. [2]

      [2] FURIMSKY E. Catalytic hydrodeoxygenation[J]. Appl Catal A: Gen, 2000, 199(2): 147-190.

    3. [3]

      [3] RAM REZ J, RAYO P, GUTI RREZ-ALEJANDRE A, ANCHEYTA J, RANA M S. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: Effect of the incorporation method of Ti[J]. Catal Today, 2005, 109(1/4): 54-60.

    4. [4]

      [4] WANG L, SHEN B, FANG F, WANG F, TIAN R, ZHANG Z, CUI L. Upgrading of light cycle oil via coupled hydrogenation and ring-opening over NiW/Al2O3-USY catalysts[J]. Catal Today, 2010, 158(3/4): 343-347.

    5. [5]

      [5] ARRIBAS M A,MARTNEZ A. The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts[J]. Appl Catal A: Gen, 2002, 230(1/2): 203-217.

    6. [6]

      [6] LEITE L, BENAZZI E, MARCHAL-GEORGE N. Hydrocracking of phenanthrene over bifunctional Pt catalysts[J]. Catal Today, 2001, 65(2/4): 241-247.

    7. [7]

      [7] HASSAN A, AHMED S, ALI M A, HAMID H, INUI T. A comparison between - and USY-zeolite-based hydrocracking catalysts[J]. Appl Catal A: Gen, 2001, 220(1/2): 59-68.

    8. [8]

      [8] GALLEZOT P. The state and catalytic properties of platinum and palladium in faujasite-type zeolites[J]. Cat Re-Sci Eng, 1979, 20(1): 121-154.

    9. [9]

      [9] ZHENG J, GUO M, SONG C. Characterization of Pd catalysts supported on USY zeolites with different SiO2/Al2O3 ratios for the hydrogenation of naphthalene in the presence of benzothiophene[J]. Fuel Process Technol, 2008, 89(4): 467-474.

    10. [10]

      [10] YASUDA H, SATO T, YOSHIMURA Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation[J]. Catal Today, 1999, 50(1): 63-71.

    11. [11]

      [11] INAMURA K,IINO A. Development of zeolite hydrocracking catalyst and system for resid hydrodesulfurization unit[J]. Catal Today, 2011, 164(1): 204-208.

    12. [12]

      [12] BREYSSE M, CATTENOT M, KOUGIONAS V, LAVALLEY J C, MAUGE F, PORTEFAIX J L, ZOTIN J L. Hydrogenation properties of ruthenium sulfide clusters in acidic zeolites[J]. J Catal, 1997, 168(2): 143-153.

    13. [13]

      [13] SIMON L J, VAN OMMEN J G, JENTYS A, LERCHER J A. Sulfur-tolerant Pt-supported zeolite catalysts for benzene hydrogenation: I. Influence of the support[J]. J Catal, 2001, 201(1): 60-69.

    14. [14]

      [14] WANDAS R, SURYGALA J, SLIWKA E. Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars[J]. Fuel, 1996, 75(6): 687-694.

    15. [15]

      [15] MOREAU C, AUBERT C, DURAND R, ZMIMITA N, GENESTE P. Structure-activity relationships in hydroprocessing of aromatic and heteroaromatic model compounds over sulphided NiO-MoO3/γ-Al2O3 and NiO-WO3/ γ -Al2O3 catalysts; chemical evidence for the existence of two types of catalytic sites[J]. Catal Today, 1988, 4(1): 117-131.

    16. [16]

      [16] MOREAU C, JOFFRE J, SAENZ C, GENESTE P. Hydroprocessing of substituted benzenes over a sulfided CoO-MoO3/γ-Al2O3 catalyst[J]. J Catal, 1990, 122(2): 448-451.

    17. [17]

      [17] SONG C, ESER S, SCHOBERT H H, HATCHER P G. Pyrolytic degradation studies of a coal-derived and a petroleum-derived aviation jet fuel[J]. Energy Fuels, 1993, 7(2): 234-243.

    18. [18]

      [18] SCHMITZ A D, BOWERS G, SONG C. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts[J]. Catal Today, 1996, 31(1/2): 45-56. NiW/Al2O3-Y催化剂的制备及其对煤焦油加氢处理的研究

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(374)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return