Citation: DAN Wei-yi, LI Jian-fen, DING Jie-feng, FAN Yi, WANG Qiang-sheng. Preparation of NiO-Fe2O3/MD catalysts and its application in gasification of municipal solid waste[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 1015-1019. shu

Preparation of NiO-Fe2O3/MD catalysts and its application in gasification of municipal solid waste

  • Corresponding author: LI Jian-fen, 
  • Received Date: 30 May 2013
    Available Online: 19 June 2013

    Fund Project: 湖北省教育厅重点科研资助项目(D20111703) (D20111703) 武汉市科技攻关项目(201160723222). (201160723222)

  • The supported NiO-Fe2O3/modified dolomite (NiO-Fe2O3/MD) catalysts were prepared by deposition-precipitation (DP)method using modified dolomite as carrier, and different approaches including XRD, SEM, TEM and BET were used to characterize the synthetic catalysts. Meanwhile, the catalytic gasification of municipal solid wastes (MSW) was conducted to test the catalytic activity and life of NiO-Fe2O3/MD catalyst in a bench-scale combined fixed bed reactor, and compared with the catalytic properties of NiO/MD catalysts. The results indicated that the prepared NiO-Fe2O3/MD catalysts had a coated core-shell structure, the particles size of the active components in catalyst surface were about 37 nm, and they had also a high BET surface area of 62.48 m2/g. The catalytic activity testing showed that the NiO-Fe2O3/MD catalysts using in gasification of MSW had a very high catalytic activity, which could significantly improve the quality and H2 yields of the produced gas, meanwhile efficiently eliminate the tar generation. Comparing with NiO/MD catalyst, the NiO-Fe2O3/MD catalyst demonstrated its unique property in preventing deactivation to attain a longer lifetime.
  • 加载中
    1. [1]

      [1] NIE Y F. Development and prospects of municipal solid waste (MSW) incineration in China[J]. Front Env Sci Eng, 2008, 2(1): 1-7.

    2. [2]

      [2] TSENG M L. Importance-performance analysis of municipal solid waste management in uncertainty[J]. Environ Monit Assess, 2011, 172(1/4): 171-187.

    3. [3]

      [3] HAM Y J, MADDISON D J, ELLIOTT R J R. The valuation of landfill disamenities in Birmingham[J]. Ecol Econ, 2013, 85(1): 116-129.

    4. [4]

      [4] REIS M F. Encyclopedia of environmental health. Holland: Elsevier, 2011: 162-217.

    5. [5]

      [5] BRETT D, HYUN SOO J, DONG-SHIK K. Recent progress in gasification/pyrolysis technologies for biomass conversion to energy[J]. Environ Prog Sust Energy, 2009, 28(1): 47-51.

    6. [6]

      [6] 胡恩源, 闫常峰, 蔡炽柳, 胡蓉蓉. 生物油水溶性组分的水蒸气催化重整制氢实验研究[J]. 燃料化学学报, 2009, 37(2): 177-182. (HU En-yuan, YAN Chang-feng, Cai Chi-liu, HU Rong-rong. Experimental research on hydrogen production by catalytic steam reform ing of bio-oil aqueous fraction[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 177-182.)

    7. [7]

      [7] MONTEJO C, COSTA C, RAMOS P, MRQUEZ M D C. Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants[J]. Appl Therm Eng, 2011, 31(13): 2135-2140.

    8. [8]

      [8] BUCHIREDDY P R, BRICKA R K, RODRIGUEZ J, HOLMES W. Biomass gasification: Catalytic removal of tars over zeolites and nickel supported zeolites[J]. Energy Fuels, 2010, 24(4): 2707-2715.

    9. [9]

      [9] LI J F, YAN R, XIAO B, LIANG D T, DU L J. Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification[J]. Environ Sci Technol, 2008, 42(16): 6224-6229.

    10. [10]

      [10] VIRGINIE M, COURSON C, KIENNEMANN A. Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst[J]. Comptes Rendus Chimie, 2010, 13(10): 1319-1325.

    11. [11]

      [11] RICHARDSON Y, BLIN J, JULBE A. A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts[J]. Prog Energy Combust Sci, 2012, 38(6): 765-781.

    12. [12]

      [12] HOU Z Y, YASHIMA T. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2[J]. Appl Catal A: Gen, 2004, 261(2): 205-209.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    15. [15]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    16. [16]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Aoran LIURui LIZongyao WANGPenghui SHANGJiawei WANDan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(560)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return