Citation: MA Xian-gang, GE Qing-jie, XU Heng-yong. Direct synthesis of liquefied petroleum gas from syngas over hybrid catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 1010-1014. shu

Direct synthesis of liquefied petroleum gas from syngas over hybrid catalyst

  • Corresponding author: GE Qing-jie, 
  • Received Date: 1 June 2013
    Available Online: 23 June 2013

    Fund Project: 国家科技支撑计划(2011BAD22B06). (2011BAD22B06)

  • Direct synthesis of liquefied petroleum gas (LPG) from syngas could be realized over a hybrid catalyst consisting of methanol synthesis catalyst and zeolite. In this work, SAPO-5 was chosen consciously for LPG synthesis, because its pore size (0.73 nm×0.73 nm) is similar to that of Y zeolite. As expected, the corresponding hybrid catalyst of SAPO-5 exhibits high selectivity (73.0%) to LPG, which confirms the previous deduction that large pore size of zeolite was beneficial to LPG synthesis. In addition, as one step process of syngas to LPG, the formation of hydrocarbons from methanol or dimethyl ether follows the hydrocarbon pool mechanism.
  • 加载中
    1. [1]

      [1] ASAMI K, ZHANG Q, LI X, ASAOKA S, FUJIMOTO K. Selective synthesis of LPG from synthesis gas[J]. Stud Surf Sci Catal, 2004, 147: 427-432.

    2. [2]

      [2] ZHANG Q, LI X, ASAMI K, ASAOKA S, FUJIMOTO K. A highly stable and efficient catalyst for direct synthesis of LPG from syngas[J]. Catal Lett, 2005, 102(1/2): 51-55.

    3. [3]

      [3] ZHANG Q, LI X, ASAMI K, ASAOKA S, FUJIMOTO K. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite[J]. Catal Today, 2005, 104(1): 30-36.

    4. [4]

      [4] GE Q, LI X, FUJIMOTO K. Application of modified beta zeolite in the direct synthesis of LPG from syngas[J]. Stud Surf Sci Catal, 2007, 170: 1260-1266.

    5. [5]

      [5] GE Q, LI X, KANEKO H, FUJIMOTO K. Direct synthesis of LPG from synthesis gas over Pd-Zn-Cr/Pd-beta hybrid catalysts[J]. J Mol Catal A: Chem, 2007, 278(1/2): 215-219.

    6. [6]

      [6] GE Q, LIAN Y, YUAN X, LI X, FUJIMOTO K. High performance Cu-ZnO/Pd-beta catalysts for syngas to LPG[J]. Catal Commun, 2008, 9(2): 256-261.

    7. [7]

      [7] 吕永兴, 王铁军, 李宇萍, 吴创之, 马隆龙. 生物质合成气一步法合成LPG的实验研究[J]. 燃料化学学报, 2008, 36(2): 246-249. (Lv Yong-xing, Wang Tie-jun, Li Yu-ping, Wu Chuang-zhi, Ma Long-long. Direct synthesis of liquefied petroleum gas from biomass synthesis gas[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 246-249.)

    8. [8]

      [8] 马现刚, 葛庆杰, 方传艳, 马俊国, 徐恒泳. 合成气制液化石油气复合催化剂的性能[J]. 催化学报, 2010, 31(12): 1501-1506. (Ma Xian-gang, Ge Qing-jie, Fang Chuan-yan, Ma Jun-guo, Xu Heng-yong. Hybrid catalysts for liquefied petroleum gas synthesis from syngas[J]. Chinese Journal of Catalysis, 2010, 31(12): 1501-1506.)

    9. [9]

      [9] MA X, GE Q, FANG C, MA J, XU H. Direct synthesis of LPG from syngas derived from air-POM[J]. Fuel, 2011, 90(5): 2051-2054.

    10. [10]

      [10] WANG L, GUO C, YAN S, HUANG X, LI Q. High-silica SAPO-5 with preferred orientation: Synthesis, characterization and catalytic applications[J]. Microporous Mesoporous Mat, 2003, 64(1/3): 63-68.

    11. [11]

      [11] ROWNAGHI A A, REZAEI F, HEDLUND J. Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size[J]. Catal Commun, 2011, 14(1): 37-41.

    12. [12]

      [12] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction[J]. J Nat Gas Chem, 2011, 20(3): 237-242.

    13. [13]

      [13] STOCKER M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous Mesoporous Mat, 1999, 29(1/2): 3-48.

    14. [14]

      [14] SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.

    15. [15]

      [15] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51(24): 5810-5831.

    16. [16]

      [16] SONG W, FU H, HAW J F. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2001, 123(20): 4749-4754.

    17. [17]

      [17] SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.

    18. [18]

      [18] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.

    19. [19]

      [19] BJØRGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142(1/2): 90-97.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(340)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return