Citation: ZHANG Jun-feng, BAI Yun-xing, ZHANG Qing-de, XIE Hong-juan, TAN Yi-sheng, HAN Yi-zhuo. Low temperature methanation of syngas in a slurry reactor over Zr-doped Ni/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 966-971. shu

Low temperature methanation of syngas in a slurry reactor over Zr-doped Ni/γ-Al2O3 catalyst

  • Corresponding author: TAN Yi-sheng,  HAN Yi-zhuo, 
  • Received Date: 31 May 2013
    Available Online: 17 June 2013

    Fund Project:

  • Zr-doped Ni/γ-Al2O3 catalyst was prepared by co-impregnation of Ni and Zr on γ-Al2O3; over it, the methanation of syngas at low temperature (300~330 ℃) in a slurry reactor was investigated. Compared with single NiO and Ni/γ-Al2O3, the catalytic performance of the Zr-doped Ni/γ-Al2O3 is greatly improved. Under optimized condition, a high CO conversion of 86.41% and a selectivity of 90.53% to CH4 are achieved at a GHSV of 4 200 mL·g-1·h-1. XRD, TEM and H2-TPR results suggest that the doping of Zr promotes dispersion of Ni on γ-Al2O3, weakens the interaction between Ni and the support and suppresses the formation of NiAl2O4 spinel with low methanation activity; all these may contribute to the excellent performance of the Zr-doped Ni/γ-Al2O3 catalyst in syngas methanation.
  • 加载中
    1. [1]

      [1] 胡大成,高加俭,贾春苗, 平原,贾丽华,王莹利,许光文,古芳娜,苏发兵. 甲烷化催化剂及反应机理的研究进展[J]. 过程工程学报, 2011, 11(5): 880-893. ( HU Da-cheng, GAO Jia-jian, JIA Chun-miao, PING Yuan, JIA Li-hua, WANG Ying-li, XU Guang-wen, GU Fang-na, SU Fa-bing. Research advances in methanation catalysts and their catalytic mechanisms[J]. The Chinese Journal of Process Engineering, 2011, 11(5): 880-893.)

    2. [2]

      [2] PAN Z Y, DONG M H, MENG X K, ZHANG X X, MU X H, ZONG B N. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation[J]. Chem Eng Sci, 2007, 62(10): 2712-2717.

    3. [3]

      [3] 谭猗生. 浆态床二甲醚合成催化剂制备化学的研究. 太原: 中国科学院山西煤炭化学研究所, 2006. ( TAN Yi-sheng. Study on the preparation chemistry of composite catalyst for slurry phase dimethyl ether synthesis. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2006.)

    4. [4]

      [4] ZHAO A M, YING W Y, ZHANG H T, MA H F, FANG D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catal Comm, 2012, 17: 34-38.

    5. [5]

      [5] 谭静,王乃继,肖翠微,周建明, 李婷,宋春燕. 煤制天然气镍基催化剂的研究进展[J]. 洁净煤技术,2011, 17(2): 43-45. ( TAN Jing, WANG Nai-ji, XIAO Cui-wei, ZHOU Jian-ming, LI Ting, SONG Chun-yan. Regression analysis of coal calorific value in Rujigou coalmine[J]. Clean Coal Technology, 2011, 17(2): 43-45.)

    6. [6]

      [6] 马胜利,谭猗生,张清德,韩怡卓. α-Ni/γ-Al2O3催化剂催化一氧化碳甲烷化反应的研究[J]. 天然气化工,2009, 34(6): 1-3. ( MA Sheng-li, TAN Yi-sheng, ZHANG Qing-de, HAN Yi-zhuo. Study on α-Ni-A12O3 catalysts for methanation of carbon monoxide[J]. Natural Gas Chemical Industry, 2009, 34(6): 1-3.)

    7. [7]

      [7] KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, YAMAZAKI Y, OMATA K, NAGAO D, KONNO M, YAMADA M. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas[J]. Appl Catal A: Gen, 2011, 395(1): 129-137.

    8. [8]

      [8] 詹吉山,郭翠梨,张俊涛,张金利. TiO2对Ni/Al2O3催化剂CO甲烷化性能的影响[J]. 燃料化学学报, 2012, 40(5): 589-593. ( ZHAN Ji-shan, GUO Cui-li, ZHANG Jun-tao, ZHANG Jin-li. Effects of TiO2 promoter on the catalytic performance of Ni/Al2O3 in CO methanation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 589-593.)

    9. [9]

      [9] 王宁. 焙烧温度对Ni-Fe/γ-Al2O3催化剂一氧化碳甲烷化性能的影响[J]. 科技情报开发与经济, 2010, 20(18): 158-160. ( WANG Ning. Discussion on the influences of the calcination temperature on CO methanation performance of Ni-Fe/γ-Al2O3 catalyst[J]. Sci-Tech Information Development & Economy, 2010, 20(18): 158-160.)

    10. [10]

      [10] MA S L, TAN YS, HAN Yi Z. Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts[J]. J Ind Eng Chem, 2011, 17(4): 723-726.

    11. [11]

      [11] CHENG Z X, WU Q L, LI Ji L, ZHU Q M. Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst[J]. Catal Today, 1996, 30(1): 147-155.

    12. [12]

      [12] LIU Q H, DONG X F, LIN W M. Highly selective CO methanation over amorphous Ni-Ru-/ZrO2 catalyst[J]. Chin Chem Lett, 2009, 20(8): 889-892.

    13. [13]

      [13] CHEN A H, MIYAO T, HIGASHIYAMA K, YAMASHITA H. high catalytic performance of ruthenium-doped mesoporous nickel-aluminum oxides for selective CO methanation[J]. Angew Chem, 2010, 122(51): 10091-10094.

    14. [14]

      [14] ZHAO A M, YING W Y, ZHANG H T, MA H F, FANG D Y. Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter[J]. J Nat Gas Chem, 2012, 21(2): 170-177.

    15. [15]

      [15] KRMER M, STÖWE K, DUISBERG M, MVLLER F, REISER M, STICHER S, MAIER W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst[J]. Appl Catal A: Gen, 2009, 369(1): 42-52.

    16. [16]

      [16] TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. Int J Hydrogen Energy, 2004, 29(10): 1065-1073.

    17. [17]

      [17] 莫欣满,董新法,刘其海,林维明. 纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J]. 石油化工, 2009, 37(7): 656-661. ( MO Xin-man, DONG Xin-fa, LIU Qi-hai, LIN Wei-ming. Selectivity methanation of CO over Ni-based catalysts supported on Nano-ZrO2[J]. Petrochemical Technology, 2009, 37(7): 656-661.)

    18. [18]

      [18] DA SILVA D C D, LETICHEVSKY S, BORGES L E P, APPEL L G. The Ni/ZrO2 catalyst and the methanation of CO and CO2[J]. Int J Hydrogen Energy, 2012, 37(11): 8923-8928.

    19. [19]

      [19] SENANAYAKE S D, EVANS J, AGNOLI S, BARRIO L, CHEN T L, HRBEK J, RODRIGUEZ J A. Water-gas shift and CO methanation reactions over Ni-CeO2(111) catalysts[J]. Top Catal, 2011, 54(1): 34-41.

    20. [20]

      [20] WANG Y Z, WU R F, ZHAO Y X. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catal Today, 2010, 158(3): 470-474.

    21. [21]

      [21] XAVIER K, SREEKALA R, RASHID K, YUSUFF K, SEN B. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Catal Today, 1999, 49(1): 17-21.

    22. [22]

      [22] WANG S, MAO D S, GUO X M, WU G S, LU G Z. Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts[J]. Catal Comm, 2009, 10(10): 1367-1370.

    23. [23]

      [23] LIU Y Y, MURATA K, INABA M, TAKAHARA I, OKABE K. Synthesis of ethanol from syngas over RhCe1-xZrxO2 catalysts[J]. Catal Today, 2011, 164(1): 308-314.

    24. [24]

      [24] LIANG H, YUAN H G, WEI F, ZHANG X W, LIU Y. Zirconia modified monolithic macroporous Pt/CeO2/Al2O3 catalyst used for water-gas shift reaction[J]. J Rare Earths, 2011, 29(8): 753-757.

    25. [25]

      [25] HU D C, GAO J J, PING Y, JIA L H, GUNAWAN P, ZHONG Z Y, XU G W, GU F N, SU F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind Eng Chem Res, 2012, 51(13): 4875-4886.

    26. [26]

      [26] GUO J J, LOU H, ZHAO H, CHAI D F, ZHENG X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A: Gen, 2004, 273(1): 75-82.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(356)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return