Citation: WU Hong-xiang, LI Hai-bin, FENG Yi-peng, WANG Xiao-bo, ZHAO Zeng-li, HE Fang. Effects of potassium on the pyrolysis of biomass components by TG-FTIR analysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 950-957. shu

Effects of potassium on the pyrolysis of biomass components by TG-FTIR analysis

  • Corresponding author: LI Hai-bin, 
  • Received Date: 9 June 2013
    Available Online: 27 June 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2011CB201500) (973计划, 2011CB201500) 中国科学院可再生能源与天然气水合物重点实验室基金(y307j81001) . (y307j81001)

  • The pyrolysis of K2CO3-impregnated hemicelluloses, cellulose, lignin and pine was investigated by TG-FTIR to assess the influence of potassium on the pyrolysis mechanisms of the main components of biomass. The results show that the pyrolysis temperature range of hemicelluloses, cellulose and lignin is 200~350 ℃, 300~365 ℃,200~600 ℃, respectively. CO and CO2 are mainly produced during hemicellulose pyrolysis, and levoglucosan and carbonyl group are mainly produced during cellulose pyrolysis, while solid product is the main product for lignin pyrolysis. The pyrolysis of the mixture of three components reveals that there are interactions among biomass components. Potassium could catalyze the pyrolysis process of hemicelluloses and cellulose, lower the pyrolysis temperature, and increase the char yields. Potassium influences the pyrolysis of cellulose most obviously, leading to a marked increase in the yields of CO, CO2 and solid product, and a decrease in carbonyl compound yield. However, potassium has little effect on the char yield of lignin, and the catalysis of potassium for the pyrolysis of mixture weakens.
  • 加载中
    1. [1]

      [1] MCKENDRY P. Energy production from biomass (Part I): Overview of biomass[J]. Bioresour Technol, 2002, 83(1): 37-46.

    2. [2]

      [2] WORASUWANNARAK N, SONOBE T, TANTHAPANICHAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique[J]. J Anal Appl Pyrol, 2007, 78(2): 265-271.

    3. [3]

      [3] HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. J Anal Appl Pyrol, 2007, 78(2): 328-336.

    4. [4]

      [4] VAN DE VELDEN M, BAEYENS J, BREMS A, JANSSENS B, DEWIL R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[J]. Renew Energy, 2010, 35(1): 232-242.

    5. [5]

      [5] DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. J Anal Appl Pyrol, 2004, 72(2): 243-248.

    6. [6]

      [6] FAHMI R, BRIDGWATER AV, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel, 2007, 86(10/11): 1560-1569.

    7. [7]

      [7] SHIMADA N, KAWAMOTO H, SAKA S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis[J]. J Anal Appl Pyrol, 2008, 81(1): 80-87.

    8. [8]

      [8] NIK-AZAR M, HAJALIGOL M R, SOHRABI M, DABIR B. Mineral matter effects in rapid pyrolysis of beech wood[J]. Fuel Process Technol, 1997, 51(1/2): 7-17.

    9. [9]

      [9] PUSHKARAJ P R, SATRIO J A, BROWN R C, SHANKS B H. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol, 2010, 101(12): 4646-4655.

    10. [10]

      [10] NOWAKOWSKI D J, JONES J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. J Anal Appl Pyrol, 2008, 83(1): 12-25.

    11. [11]

      [11] COLLARD F X, BLIN J, BENSAKHRIA A, VALETTE J. Influence of impregnated metal on the pyrolysis conversion of biomass constituents[J]. J Anal Appl Pyrol, 2012, 95: 213-226.

    12. [12]

      [12] 武宏香, 赵增立, 张伟, 李海滨, 何方. 碱/碱土金属对纤维素热解特性的影响[J]. 农业工程学报, 2012, 28(4): 215-220. (WU Hong-xiang, ZHAO Zeng-li, ZHANG Wei, LI Hai-bin, HE Fang. Effects of alkali/alkaline earth metals on pyrolysis characteristics of cellulose[J]. Transactions of the CSAE, 2012, 28(4): 215-220.)

    13. [13]

      [13] 郑安庆, 赵增立, 江洪明, 张伟, 常胜, 吴文强, 李海滨. 松木预处理温度对生物油特性的影响[J]. 燃料化学学报, 2012, 40(1): 29-36. (ZHENG An-qing, ZHAO Zeng-li, JIANG Hong-ming, ZHANG Wei, CHANG Sheng, WU Wen-qing, LI Hai-bin. Effect of pretreatment temperature of pine on bio-oil characteristics[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 29-36.)

    14. [14]

      [14] ALN R, KUOPPALA E, OESCH P. Formation of the main degradation compound groups from wood and its components during pyrolysis[J]. J Anal Appl Pyrol, 1996, 36(2): 137-148.

    15. [15]

      [15] AZEEZ A M, MEIER D, ODERMATT J. Temperature dependence of fast pyrolysis volatile products from European and African biomasses[J]. J Anal Appl Pyrol, 2011, 90(2): 81-92.

    16. [16]

      [16] SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresour Technol, 2009, 100(24): 6496-6504.

    17. [17]

      [17] SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan based hemicellulose using TG–FTIR and Py-GC-FTIR[J]. J Anal Appl Pyrol, 2010, 87(2): 199-206.

    18. [18]

      [18] LIU Q, ZHONG Z P, WANG S R, LUO Z Y. Interactions of biomass components during pyrolysis: A TG-FTIR study[J]. J Anal Appl Pyrol, 2011, 90(2): 213-218.

    19. [19]

      [19] 王树荣, 廖艳芬, 文丽华, 骆仲泱, 岑可法. 钾盐催化纤维素快速热裂解机理研究[J]. 燃料化学学报, 2004, 32(6): 694-698. (WANG Shu-rong, LIAO Yan-fen, WEN Li-hua, LUO Zhong-yang, CEN Ke-fa. Catalysis mechanism of potassium salt during rapid pyrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 694-698.)

    20. [20]

      [20] 刘军利, 蒋剑春, 黄海涛. 纤维素CP-GC-MS法裂解行为研究[J]. 林产化学与工业, 2009, 29(5): 47-53. (LIU Jun-li, JIABG Jian-chun, HUANG Hai-tao. Study of thermal transformations of cellulose under curie-point pyrolysis-GC-MS conditions[J]. Chemistry and Industry of Forest Products, 2009, 29(5): 47-53.)

    21. [21]

      [21] MAYER Z A, APFELBACHER A, HORNUNG A. A comparative study on the pyrolysis of metal- and ash-enriched wood and the combustion properties of the gained char[J]. J Anal Appl Pyrol, 2012, 96: 196-202.

    22. [22]

      [22] HOSOYA T, KAWAMOTO H, SAKA S. Secondary reactions of lignin-derived primarytar components[J]. J Anal Appl Pyrol, 2008, 83(1): 78-87.

    23. [23]

      [23] LI S, LYONS-HART J, BANYASZ J, SHAFER K. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817.

    24. [24]

      [24] PAPPA A, MIKEDI K, TZAMTZIS N, STATHEROPOULOS M. Chemometric methods for studying the effects of chemicals on cellulose pyrolysis by thermogravimetry-mass spectrometry[J]. J Anal Appl Pyrol, 2003, 67(2): 221-235.

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    10. [10]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(0)
  • Abstract views(902)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return