Citation: CHEN Zong-ding, GONG Xu-zhong, WANG Zhi, WANG Yong-gang, ZHANG Shu, XU De-ping. Sulfur removal from ionic liquid-assisted coal water slurry electrolysis in KNO3 system[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 928-936. shu

Sulfur removal from ionic liquid-assisted coal water slurry electrolysis in KNO3 system

  • Corresponding author: GONG Xu-zhong, 
  • Received Date: 10 January 2013
    Available Online: 1 April 2013

    Fund Project: Nature Science Foundation of China(51004090) (51004090)

  • Ionic liquid-assisted coal water slurry (CWS) electrolysis was carried out in KNO3 system with constant current. The effects of ionic liquids including structure, concentration, temperature and time on the removal of sulfur were investigated to intensify desulfurization ratio from CWS electrolysis. Given the organic structure of imidazole, the influence of anions on the desulfurization was in the following order: Br->BF4- >Cl-. Given the same anion of Br-, imidazole showed better performance than pyridine in terms of sulfur elimination. With increasing N-butylpyridinium bromide ([BPy]Br) concentration, the desulfurization ratio increased at the initial stage, and then decreased after 0.30 mol/L. Additionally, the desulfurization ratio continuously increased with time and temperature. Finally, the organic sulfur occurrences in coal before and after experiments were characterized by XPS technique. Results showed that the removal of thiophene was improved due to the extraction-oxidation effects and others (i.e. thioethers and sulfoxide) were removed mainly via enhanced oxidation and hydrolysis reactions.
  • 加载中
    1. [1]

      [1] SHASHI B, LALVANI S B, SHAMI M. Anodic depolarization by aqueous pyrite slurries in the production of hydrogen[J]. Fuel, 1985, 64(8): 1075-1078.

    2. [2]

      [2] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature, 1979, 297: 301-303.

    3. [3]

      [3] FAROOQUE M, COUGHLIN R W. Anodic coal reaction lowers energy consumption of metal electrowinning[J]. Nature, 1979, 280: 666-668.

    4. [4]

      [4] FAROOQUE M, COUGHLIN R W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979, 85(10): 705-712.

    5. [5]

      [5] LALVANI S B, PATA M, COUGHLIN R W. Sulphur removal from coal by electrolysis[J]. Fuel, 1983, 62(4): 427-437.

    6. [6]

      [6] WAPNER P G, LALVANI S B, AWAD G. Organic sulfur removal from coal by electrolysis in alkaline media[J]. Fuel Process Technol, 1988, 18(1): 25-36.

    7. [7]

      [7] LALVANI S B, NAND S. Electrolytic pretreatment of Illinois No.6 coal[J]. Fuel Process Technol, 1985, 11(1): 25-36.

    8. [8]

      [8] SHEN Y F, SUN T H, JIA J P. A novel desulphurization process of coal water slurry via sodium metaborate electroreduction in the alkaline system[J]. Fuel, 2012, 96: 250-256.

    9. [9]

      [9] ZHONG S T, ZHAO W, SHENG C, XU W J, ZONG Z M,WEI X Y. Mechanismfor removal of organic sulfur from guiding subbituminous coal by electrolysis[J]. Energy Fuels, 2011, 25(8): 3687-3692.

    10. [10]

      [10] BORAH D. Electron-Transfer-Induced desulfurization of organic sulfur from sub-bituminous coal[J]. Energy Fuels, 2004, 18(5): 1463-1471.

    11. [11]

      [11] 易平贵, 刘俊峰, 陈安国. 水-有机溶剂混合体系中高硫煤电解脱硫的研究[J]. 洁净煤技术, 1998, 4(4): 48-51.

    12. [12]

      (YI Ping-gui, LIU Jun-feng, CHEN An-guo. Study on desulfurization of coal by electrolysis in water-organic solvent mixtures[J]. Clean Coal Technol, 1998, 4(4): 48-51.)

    13. [13]

      [12] 崔才喜, 徐龙君. 正丙醇脱煤中有机硫的机理分析[J]. 煤炭转化, 2008, 31(3): 55-58.

    14. [14]

      (CUI Cai-xi, XU Long-jun. Analysis on mechanism of organic sulfur removal from coal by n-propanol [J]. Coal Conversion, 2008, 31(3): 55-58.)

    15. [15]

      [13] ZHU W S, ZHU G P, LI H M, CHAO Y H, CI Y H, HAN C R. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. J Mol Catal A: Chem, 2011, 347(1/2): 8-14.

    16. [16]

      [14] SCHUCKER R C, BAIRD W C. Electrochemical oxidation of sulfur compounds in naphthausing ionic liquids: US, 6338788 B1[P]. 2002.

    17. [17]

      [15] ROBERT C S, WILLIAM C B. Electrochemical oxidation of sulfur compounds in naphthausing ionic liquids US: 6274026B1[P]. 2001.

    18. [18]

      [16] ZHU W S, HUANG W L, LI H M, ZHANG M, JIANG W, CHEN G Y, HAN C R. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Process Technol, 2011, 92(10): 1842-1848.

    19. [19]

      [17] ZHANG S G, ZHANG Q L. Extractive desulfurization and denitrogenation of fuel using ionic liquids[J]. Ind End Chem Res, 2004, 43(2): 614-622.

    20. [20]

      [18] FRANCISCO M, ARCE A, SOTO A. Ionic liquids on desulfurization of fuel oils[J]. Fluid Phase Equilib, 2010, 294(1/2): 39-48.

    21. [21]

      [19] ZHANG C, PAN X Y, WANG F, LIU X Q. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel, 2012, 102: 580-584.

    22. [22]

      [20] LAM V, LI G C, SONG C J, CHEN J W, FAIRBRIDGE C,HUI R, ZHANG J J. A review of electrochemical desulfurization technologies for fossil fuels[J]. Fuel Process Technol, 2012, 98: 30-38.

    23. [23]

      [21] GONG X Z, WANG M Y, WANG Z, GUO Z C. Desulfuration of electrolyzed coal water slurry in HCl system with ionic liquid addition[J]. Fuel Process Technol, 2012, 99(1): 6-12.

    24. [24]

      [22] FROST D C, LEEDER W R, ROBERT L. X-ray photoelectron spectroscopic investigation of coal[J]. Fuel, 1974, 53(3): 206-210.

    25. [25]

      [23] HITTLE L R, SHARKEY A G, FROST D C. Determination of sulfur of coal sulfur of coal surfaces by X-ray photoelectron spectroscopy[J]. Fuel, 1993, 72(6): 771-776.

    26. [26]

      [24] ZHANG S, ZHANG Q, ZHANG Z. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind Eng Chem Res, 2004, 43(2): 614-622.

    27. [27]

      [25] HOLBREY J D, REICHERT W, NIEUWENHUYZEN M, SHEPPARD O, HARDACRE C, ROQUES R D. Liquid clathrate formation in ionic liquid-aromatic mixture[J]. Chem Commun, 2003, (4): 476-477.

    28. [28]

      [26] ZHANG S, ZHANG Z C. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature[J]. Green Chem, 2002, 4(4): 376-379.

    29. [29]

      [27] 罗道成, 易平贵, 刘俊峰, 胡忠于. 酸性体系H2O-NaBr混合溶剂中煤的电化学脱硫研究[J]. 煤化工, 2002, 98(1): 12-15.

    30. [30]

      (LUO Dao-cheng, YI Ping-gui, LIU Jun-feng, Hu Zhong-yu. Study on desulfurization of coal by electrolysis in mixed solvent of H2O-NaBr in acidic system[J]. Coal Chemical Industry, 2002, 98(1): 12-15.)

    31. [31]

      [28] JIN X, BOTTE G G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. J Power Sources, 2007, 171(2): 826-834.

    32. [32]

      [29] JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010, 195(15): 4935-4942.

    33. [33]

      [30] PATIL P, DE A Y, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006, 158(1): 368-377.

    34. [34]

      [31] 张永涛, 张国栋. 甘霖煤碱性体系中电解脱硫研究[J]. 马钢职工大学学报, 2001, 11(4): 17-22. ZHANG Y T, ZHANG G D. The removal of sulfur from coal in Ganlin by electrolysis[J]. Journal of Magang Staff and Workers’ University, 2001, 11(4): 17-22.

    35. [35]

      [32] 罗道成, 刘俊峰. 碱性体系中煤中有机硫的电化学脱除研究[J]. 煤化工, 2005, 118(3): 29-32.

    36. [36]

      (LUO Dao-cheng, LIU Jun-feng. Study on organic sulfur removal from coal by electrolysis in alkaline media[J]. Coal Chemisty Industry, 2005, 118(3): 29-32.)

    37. [37]

      [33] MOROOKA S, MUREKAMI A K. Organic sulfur removal from coal[J]. Fuel, 1984, 63: 947-950.

    38. [38]

      [34] DOWERAH D, BARUAH M K. Removal of organic sulphur from high sulphur Indian coal[J]. Fuel, 1999, 78(9): 1083-1089.

    39. [39]

      [35] TAKAHASHI A, YANG F H, YANG R T. New sorbents for desulfurization by [WTBZ]π[WTB1]-complexation: Thiophene/benzene adsorption[J]. Ind Eng Chem Res, 2002, 41(10): 2487-2496.

    40. [40]

      [36] 张进, 朴香兰, 朱慎林. 新型离子液体对苯并噻吩、二苯并噻吩的萃取性能研究[J]. 石油炼制与化工, 2008, 39(2): 38-41.

    41. [41]

      (ZHANG Jin, PIAO Xiang-lan, ZHU Shen-lin. Study on the extraction performance of new ionic liquid for removing benzothiophene and dibenzothiophene[J]. Petroleum processing and petrochemicals, 2008, 39(2): 38-41.)

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    13. [13]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    15. [15]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(831)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return