Citation: ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG An-jie, ZHAO Sheng-sheng. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(7): 883-888. shu

Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming

  • Corresponding author: PAN Li-wei,  WANG Shu-dong, 
  • Received Date: 26 April 2013
    Available Online: 2 June 2013

    Fund Project: National Natural Science Foundation of China (21076206) (21076206) Natural Basic Research Program of China (973 Program, 2010CB732302) (973 Program, 2010CB732302) National High Technology Research and Development Program (863 Program, 2011AA050706). (863 Program, 2011AA050706)

  • CuO/ZnO/CeO2-ZrO2 catalysts for methanol steam reforming (MSR) were prepared by a co-precipitation procedure, and the effects of precipitation aging time on the catalytic performance were investigated. It was found that the prolonged precipitation aging time increased the surface Cu atoms and improved the reducibility of catalyst, but decreased the oxygen storage capacity. A nearly linear increase between the surface Cu atoms and H2 production rate was obtained in prepared CuO/ZnO/CeO2-ZrO2 catalysts with prolonged precipitation aging time. However, CO concentration increased with the decrease of the oxygen storage capacity. Considering the H2 production rate and CO level, the optimal precipitation aging time was 2 h. CuO/ZnO/CeO2-ZrO2 prepared using this aging time exhibited the best activity with suppressed CO formation.
  • 加载中
    1. [1]

      [1] GUNTER M M, RESSLER T, JENTOFT R E, BEMS B. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy[J]. J Catal, 2001, 203(1): 133-149.

    2. [2]

      [2] LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.

    3. [3]

      [3] SHEN G C, FUJITA S, MATSUMOTO S, TAKEZAWA N. Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface-structure and catalytic activity[J]. J Mol Catal A: Chem, 1997, 124(1/2): 123-136.

    4. [4]

      [4] LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on [WTBZ]γ[WTB1]-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A: Gen, 2002, 234(1/2): 111-125.

    5. [5]

      [5] MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.

    6. [6]

      [6] FUKNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.

    7. [7]

      [7] ZHANG X R, SHI P F, ZHAO J X, ZHAO M Y, LIU C T. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.

    8. [8]

      [8] HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over Cu/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009, 358(1): 7-12.

    9. [9]

      [9] JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal B: Environ, 2009, 90(1/2):195-204.

    10. [10]

      [10] MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009, 91(1/2): 524-532.

    11. [11]

      [11] UDANI P P C, GUNAWARDANA P V D S, LEE HC, KIM DH. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009, 34(18): 7648-7655.

    12. [12]

      [12] MATTER P H, BRADEN D J, OZKAN U S. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts[J]. J Catal, 2004, 223(2): 340-351.

    13. [13]

      [13] AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRER I, NAVARRO R M, FIERRO J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and A12O3[J]. J Catal, 2003, 219(2): 389-403.

    14. [14]

      [14] ZHANG X R, SHI P F. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A: Chem, 2003, 194(1/2): 99-105.

    15. [15]

      [15] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4397-4406.

    16. [16]

      [16] CAO L, NI C J, YUAN Z S, WANG S D. Correlation between catalystic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/Ce0.45Zr0.45RE0.1 catalysts (RE=La, Pr, Nd, Sm, Eu, Gd, Tb)[J]. Catal Commun, 2009, 10(8): 1192-1195.

    17. [17]

      [17] FORNASIERO P, MONTE R D, RAO G R, KASPAR J, MERIANI S, TROVARELLI A, GRAZIANI M. Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties[J]. J Catal,1995, 151(1): 168-177.

    18. [18]

      [18] SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low- temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today, 2002, 77(1/2): 89-98.

    19. [19]

      [19] WALLER D, STIRLING D, STONE F S, SPENCER M S. Copper-zinc oxide catalysts-activity in relation to precursor structure and morphology[J]. Faraday Discuss Chem Soc, 1989, 87(0): 107-120.

    20. [20]

      [20] TAYLOR S H, HUTCHINGS G J, MIRZAEI A A. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Catal Today, 2003, 84(3/4): 1173-1374.

    21. [21]

      [21] SZIZYBALSKI A, GIGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307.

    22. [22]

      [22] CHINCHEN G C, HAY C M, VANDERVELL H D, WAUGH K C. The measurement of copper surface areas by reactive frontal chromatography[J]. J Catal, 1987, 103(1): 79-86.

    23. [23]

      [23] SHIMOLAWABE H, ASAKAWA H, TAKEZAWA N. Characterization of copper/zirconia catalysts prepared by an impregnation method[J]. Appl Catal, 1990, 59(1): 45-58.

    24. [24]

      [24] BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia- containing Cu-Zn-Al catalysts[J]. Catal Today, 1999, 51(3/4): 521-533.

    25. [25]

      [25] TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Appl Catal, 1982, 2(6): 363-366.

  • 加载中
    1. [1]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    4. [4]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    9. [9]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    10. [10]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    13. [13]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    15. [15]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    18. [18]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    19. [19]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    20. [20]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(0)
  • Abstract views(739)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return