Citation:
ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG An-jie, ZHAO Sheng-sheng. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(7): 883-888.
-
CuO/ZnO/CeO2-ZrO2 catalysts for methanol steam reforming (MSR) were prepared by a co-precipitation procedure, and the effects of precipitation aging time on the catalytic performance were investigated. It was found that the prolonged precipitation aging time increased the surface Cu atoms and improved the reducibility of catalyst, but decreased the oxygen storage capacity. A nearly linear increase between the surface Cu atoms and H2 production rate was obtained in prepared CuO/ZnO/CeO2-ZrO2 catalysts with prolonged precipitation aging time. However, CO concentration increased with the decrease of the oxygen storage capacity. Considering the H2 production rate and CO level, the optimal precipitation aging time was 2 h. CuO/ZnO/CeO2-ZrO2 prepared using this aging time exhibited the best activity with suppressed CO formation.
-
-
-
[1]
[1] GUNTER M M, RESSLER T, JENTOFT R E, BEMS B. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy[J]. J Catal, 2001, 203(1): 133-149.
-
[2]
[2] LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.
-
[3]
[3] SHEN G C, FUJITA S, MATSUMOTO S, TAKEZAWA N. Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface-structure and catalytic activity[J]. J Mol Catal A: Chem, 1997, 124(1/2): 123-136.
-
[4]
[4] LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on [WTBZ]γ[WTB1]-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A: Gen, 2002, 234(1/2): 111-125.
-
[5]
[5] MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.
-
[6]
[6] FUKNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.
-
[7]
[7] ZHANG X R, SHI P F, ZHAO J X, ZHAO M Y, LIU C T. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.
-
[8]
[8] HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over Cu/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009, 358(1): 7-12.
-
[9]
[9] JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal B: Environ, 2009, 90(1/2):195-204.
-
[10]
[10] MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009, 91(1/2): 524-532.
-
[11]
[11] UDANI P P C, GUNAWARDANA P V D S, LEE HC, KIM DH. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009, 34(18): 7648-7655.
-
[12]
[12] MATTER P H, BRADEN D J, OZKAN U S. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts[J]. J Catal, 2004, 223(2): 340-351.
-
[13]
[13] AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRER I, NAVARRO R M, FIERRO J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and A12O3[J]. J Catal, 2003, 219(2): 389-403.
-
[14]
[14] ZHANG X R, SHI P F. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A: Chem, 2003, 194(1/2): 99-105.
-
[15]
[15] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4397-4406.
-
[16]
[16] CAO L, NI C J, YUAN Z S, WANG S D. Correlation between catalystic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/Ce0.45Zr0.45RE0.1 catalysts (RE=La, Pr, Nd, Sm, Eu, Gd, Tb)[J]. Catal Commun, 2009, 10(8): 1192-1195.
-
[17]
[17] FORNASIERO P, MONTE R D, RAO G R, KASPAR J, MERIANI S, TROVARELLI A, GRAZIANI M. Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties[J]. J Catal,1995, 151(1): 168-177.
-
[18]
[18] SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low- temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today, 2002, 77(1/2): 89-98.
-
[19]
[19] WALLER D, STIRLING D, STONE F S, SPENCER M S. Copper-zinc oxide catalysts-activity in relation to precursor structure and morphology[J]. Faraday Discuss Chem Soc, 1989, 87(0): 107-120.
-
[20]
[20] TAYLOR S H, HUTCHINGS G J, MIRZAEI A A. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Catal Today, 2003, 84(3/4): 1173-1374.
-
[21]
[21] SZIZYBALSKI A, GIGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307.
-
[22]
[22] CHINCHEN G C, HAY C M, VANDERVELL H D, WAUGH K C. The measurement of copper surface areas by reactive frontal chromatography[J]. J Catal, 1987, 103(1): 79-86.
-
[23]
[23] SHIMOLAWABE H, ASAKAWA H, TAKEZAWA N. Characterization of copper/zirconia catalysts prepared by an impregnation method[J]. Appl Catal, 1990, 59(1): 45-58.
-
[24]
[24] BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia- containing Cu-Zn-Al catalysts[J]. Catal Today, 1999, 51(3/4): 521-533.
-
[25]
[25] TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Appl Catal, 1982, 2(6): 363-366.
-
[1]
-
-
-
[1]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[2]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[3]
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
-
[4]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001
-
[5]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[6]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[7]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[8]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[9]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[10]
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
-
[11]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[12]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[13]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
-
[14]
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
-
[15]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[16]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[17]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[18]
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
-
[19]
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
-
[20]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(739)
- HTML views(62)