Citation:
YU Zhong-liang, LI Chun-yu, JING Xu-liang, DING Liang, FANG Yi-tian, HUANG Jie-jie. Catalytic chemical looping combustion of coal with iron-based oxygen carrier promoted by K2CO3[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(7): 826-831.
-
Effects of K2CO3 addition and inert supports on chemical looping combustion (CLC) of coal with iron-based oxygen carrier were investigated. The results indicate that the reduction of iron-based oxygen carrier by coal can be remarkably improved by the addition of K2CO3. This enhancement can be ascribed to the catalytic CO2 gasification (rate-controlling step) by K2CO3 which migrates from oxygen carrier to coal particles. The sintering of iron-based oxygen carrier is promoted by K2CO3 due to its low melting temperature and the intensified redox reaction after K2CO3 addition. The inert support has no significant effect on the reactivity between coal and oxygen carrier, which could be due to the inert support do not affect the rate-limiting step. The catalytic activity can be observed during several redox cycles. However, there is a decreasing tendency of activity due to the loss and deactivation of catalyst.
-
Keywords:
- catalyst,
- chemical looping combustion,
- coal,
- oxygen carrier,
- iron oxide,
- K2CO3
-
-
-
[1]
[1] ISHIDA M, JIN H. A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4): 415-422.
-
[2]
[2] ISHIDA M, JIN H, OKAMOTO T. A Fundamental study of a new kind of medium material for chemical-looping combustion[J]. Energy Fuels,1996, 10(4): 958-963.
-
[3]
[3] ADANEZ J, DE DIEGO L F, GARCIA-LABIANO F, GAYAN P, ABAD A, PALACIOS J M. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels, 2004, 18(2): 371-377.
-
[4]
[4] ABAD A, MATTISSON T, LYNGFELT A, JOHANSSON M. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7/8): 1021-1035.
-
[5]
[5] WANG S Z, WANG G X, JIANG F, LUO M, LI H Y. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier[J]. Energy Environ Sci, 2010, 3(9): 1353-1360.
-
[6]
[6] CAO Y, PAN W P. Investigation of chemical looping combustion by solid fuels. 1. Process analysis[J]. Energy Fuels, 2006, 20(5): 1836-1844.
-
[7]
[7] CAO Y, CASENAS B, PAN W P. Investigation of chemical looping combustion by solid fuels: 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier[J]. Energy Fuels, 2006, 20(5): 1845-1854.
-
[8]
[8] 黄振, 何方, 李海滨, 赵增立. 固体燃料化学链燃烧技术的研究进展[J]. 煤炭转化, 2010, 33(4): 83-89. (HUANG Zhen, HE Fang, LI Hai-bin, ZHAO Zeng-li. Study on development of chemical-looping combustion for solid fuels[J]. Coal Conversion, 2010, 33(4): 83-89.)
-
[9]
[9] 陈定千, 沈来宏, 肖军, 宋涛, 顾海明, 张思文. 基于镍基修饰的铁矿石载氧体煤化学链燃烧实验[J]. 燃料化学学报, 2012, 40(3): 267-272. (CHEN Ding-qian, SHEN Lai-hong, XIAO Jun, SONG Tao, GU Hai-ming, ZHANG Si-wen. Experimental investigation of hematite oxygen carrierdecorated with NiO for chemical looping combustion of coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 267-272.)
-
[10]
[10] HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations-A review[J]. Chem Eng Sci, 2008, 63(18): 4433-4451.
-
[11]
[11] ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DE DIEGO L F. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012, 38(2): 215-282.
-
[12]
[12] SCOTT S, DENNIS J, HAYHURST A, BROWN T. In situ gasification of a solid fuel and CO2 separation using chemical looping[J]. AIChE J, 2006, 52(9): 3325-3327.
-
[13]
[13] GU H, SHEN L, XIAO J, ZHANG S, SONG T, CHEN D. Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal[J]. Combust Flame, 2012, 159(7): 2480-2490.
-
[14]
[14] YU Z, LI C, JING X, ZHANG Q, FANG Y, ZHAO J, HUANG J. Effects of CO2 atmosphere and K2CO3 addition on the reduction reactivity, oxygen transport capacity, and sintering of CuO and Fe2O3 oxygen carriers in coal direct chemical looping combustion[J]. Energy Fuels, 2013, 27(5): 2703-2711.
-
[15]
[15] YU Z, LI C, FANG Y, HUANG J, WANG Z. Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier[J]. Energy Fuels, 2012, 26(4): 2505-2511.
-
[16]
[16] 洪冰清, 陈凡敏, 王兴军, 于广锁. KOH 负载量对不同煤样加氢气化效果影响的实验研究[J]. 燃料化学学报, 2012, 40(9): 1032-1037. (HONG Bing-qing, CHEN Fan-min, WANG Xing-jun, YU Guang-suo. Effect of KOH loading on different coals hydrogasification[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1032-1037.)
-
[1]
-
-
-
[1]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[2]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[3]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[4]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[5]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[6]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[7]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[8]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[9]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[10]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[11]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[12]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[13]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[15]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[16]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[17]
Xinghai Liu , Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100
-
[18]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[19]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[20]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(481)
- HTML views(23)