Citation: SHI Gang, LIN Xiu-ying, FAN Yu, BAO Xiao-jun. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(5): 589-600. shu

Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading

  • Corresponding author: BAO Xiao-jun, 
  • Received Date: 10 January 2013
    Available Online: 26 March 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB226900)。 (973计划, 2010CB226900)

  • The effects of the sequence of the combined steaming and alkali treatments of ZSM-5 zeolite on its acidic properties and pore structure were investigated and compared with those of individual steaming treatment or alkali treatment. The results showed that the alkali treatment after steaming has triple effects on the resultant ZSM-5 zeolite, i.e. desilication, realumination and removal of extra-framework aluminum; whereas the steaming after alkali treatment has binary effects, i.e. dealumination and stabilization. Compared with the alkali treatment after steaming, the steaming after alkali treatment is more effective in adjusting the zeolite acidic properties and creating mesopores. The catalyst derived from ZSM-5 zeolite modified via the combined alkali treatment and steaming exhibits moderate isomerization activity, higher aromatization activity and superior stability in the hydro-upgrading of fluid catalytic cracking gasoline.
  • 加载中
    1. [1]

      [1] KOKO TAILO G T, LAWTON S L, OLSON D H, MEIER W M. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978, 272: 437-438.

    2. [2]

      [2] BIEMMI E, BEIN T. Assembly of nanozeolite monolayers on the gold substrates of piezoelectric sensors[J]. Langmuir, 2008, 24(19): 11196-11202.

    3. [3]

      [3] TAN P L, LEUNG Y L, LAI S Y, AU C T. The effect of calcination temperature on the catalytic performance of 2 wt.% Mo/HZSM-5 in methane aromatization[J]. Appl Catal A, 2002, 228(1-2): 115-125.

    4. [4]

      [4] NAYAK V S, CHOUDHARY V R. Selective poisoning of stronger acid sites on HZSM-5 in the conversion of alcohols and olefins to aromatics[J]. Appl Catal, 1984, 9: 251-261.

    5. [5]

      [5] CHAL R, GRARDIN C, BULUT M, VAN DONK S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. Chem Cat Chem, 2011, 3(1): 67-81.

    6. [6]

      [6] SASAKI Y, SUZUKI T, TAKAMURA T, SAJI A, SAKA H. Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera[J]. J Catal, 1998, 178(1): 94-100.

    7. [7]

      [7] JANSSEN A H, KOSTER A J, de JONG K P. On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis[J]. J Phys Chem B, 2002, 106(46): 11905-11909.

    8. [8]

      [8] MOHAMED M M, SALAMA T M. Effect of mordenite dealumination on the structure of encapsulated molybdenum catalysts[J]. J Colloid Interface Sci, 2002, 249(1): 104-112.

    9. [9]

      [9] VAN DONK S, JANSSEN A H, BITTER J H, DE JONG K P. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003, 45(2): 297-319.

    10. [10]

      [10] DESSAU R M, VALYOCSIK E W, GOEKE N H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7): 776-779.

    11. [11]

      [11] LIETZ G, SCHNABEL K H, PEUKER C, GROSS T, STOREK W, VÖLTER J. Modifications of H-ZSM-5 catalysts by NaOH treatment[J]. J Catal, 1994, 148(2): 562-568.

    12. [12]

      [12] OGURA M, SHINOMIYA S, TATENO J, NARA Y, KIKUCHI E, MATSUKATA M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J]. Chem Lett, 2000, 29(8): 882-883.

    13. [13]

      [13] OGURA M, SHINOMIYA S, TATENO J, NARA Y, NOMURA M, KIKUCHI E, MATSUKATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A, 2001, 219(1-2): 33-43.

    14. [14]

      [14] SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater, 2001, 43(1): 83-89.

    15. [15]

      [15] GROEN J G, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surf A, 2004, 241(1-3): 53-58.

    16. [16]

      [16] ĈIŽMEK A, SUBOTIC B, AIELLO R, CREA F, NASTRO A, TUOTO C. Dissolution of high-silica zeolites in alkaline solutions I. Dissolution of silicalite-1 and ZSM-5 with different aluminum content[J]. Microporous Mater, 1995, 4(2-3): 159-168.

    17. [17]

      [17] ĈIŽMEK A, SUBOTIC B, AIELLO R, CREA F, NASTRO A, TUOTO C. Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of 'activated' silicalite-1 and ZSM-5 with different aluminum content[J]. Microporous Mater, 1997, 8(3-4): 159-169.

    18. [18]

      [18] DOREMIEUX-MORIN C, RAMSARAN A, LE VAN MAO R, BATAMACK P, HEERIBOUT L, SEMMER V, DENES G, FRAISSARD J. 1H broad-line and MAS NMR: Application to the study of acid sites of desilicated zeolite ZSM-5[J]. Catal Lett, 1995, 34(1-2): 139-149.

    19. [19]

      [19] ZHANG W, BAO X, GUO X, WANG X. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catal Lett, 1999, 60(1-2): 89-94.

    20. [20]

      [20] ZHANG W, HAN X, LIU X, BAO X. The stability of nanosized HZSM-5 zeolite: A high-resolution solid-state NMR study[J]. Microporous Mesoporous Mater, 2001, 50(1): 13-23.

    21. [21]

      [21] AXON S A, KLINOWSKI J. Synthesis and characterization of defect-free crystals of MFI-type zeolites[J]. Appl Catal A, 1992, 81(1): 27-34.

    22. [22]

      [22] ZHANG W, MA D, HAN X, LIU X, BAO X, GUO X, WANG X. Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes[J]. J Catal, 1999, 188(2): 393-402.

    23. [23]

      [23] LE VAN MAO R, LE S T, Ohayon D, CALILLIBOT F, GELEBART L, DENSE G. Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment[J]. Zeolites, 1997, 19(4): 270-278.

    24. [24]

      [24] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. Am Mineral, 1953, 39: 92-96.

    25. [25]

      [25] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J]. Microporous Mesoporous Mater, 2004, 69(1-2): 29-34.

    26. [26]

      [26] GROEN J C, BACH T, ZIESE U, Donk A M P, de JONG K P, MOULIJN J A, PREZ-RAMREZ J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. J Am Chem Soc, 2005, 127(31): 10792-10793.

    27. [27]

      [27] XIAO F S, WANG L, YIN C, LIN K, DI Y, LI J, XU R, SU D S, SCHIOGL R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem Int Ed, 2006, 45(19), 3090-3093.

    28. [28]

      [28] MELIN-CABRERA I, ESPINOSA S, MENTRUIT C, KAPTEIJN F, MOULIJN J A. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts[J]. Catal Commun, 2006, 7(2): 100-103.

    29. [29]

      [29] MELIN-CABRERA I, ESPINOSA S, GROEN J C, VAN DEN LINDEN B, KAPTEIJN F, MOULIJN J A. Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition[J]. J Catal, 2006, 238(2): 250-259.

    30. [30]

      [30] YANG C, XU Q. States of aluminum in zeolite β and influence of acidic or basic medium[J]. Zeolites, 1997, 19(5-6): 404-410.

    31. [31]

      [31] SCHERZER J, BASS J L, HUNTER F D. Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure[J]. J Phys Chem, 1975, 79(12): 1194-1199.

    32. [32]

      [32] LE VAN MAO R, XIAO S, RAMSARAN A, YAO J. Selective removal of silicon from zeolite frameworks using sodium carbonate[J]. J Mater Chem, 1994, 4: 605-610.

    33. [33]

      [33] GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater, 2005, 87(2): 153-161.

    34. [34]

      [34] GROEN J C, JANSEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004, 108(35): 13062-13065.

    35. [35]

      [35] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J]. Chem Eur J, 2005, 11(7): 4983-4994.

    36. [36]

      [36] 王辉, 张汉军, 孔德金, 陈庆龄, 高滋. ZSM-5催化剂水蒸气处理对甲苯选择性歧化性能的影响[J]. 石油化工, 2000, 29(6): 401-404. (WANG Hui, ZHANG Han-jun, KONG De-jin, CHEN Qing-ling, GAO Zi. Effects of hydrothermal treatment on selective toluene disproportionation[J]. Petrochemical Technology, 2000, 29(6): 401-404.)

    37. [37]

      [37] 吕仁庆, 王秋英, 项寿鹤. 碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J]. 催化学报, 2002, 23(5): 421-424. (LU Ren-qing, WANG Qiu-ying, XIANG Shou-he. Investigation of acid properties and structure of ZSM-5 zeolite treated with alkaline steaming[J]. Chinese Journal Catalysis, 2002, 23(5): 421-424.)

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    4. [4]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(0)
  • Abstract views(446)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return