Citation:
ZHONG Wei-cheng, GUO Qing-jie, WANG Xu-yun, ZHANG Liang. Catalytic hydroprocessing of the fast pyrolysis bio-oil of Chlorella[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(5): 571-578.
-
Catalytic hydroprocessing of the bio-oil obtained through fast pyrolysis of Chlorella was carried out in a bench-scale continuous-flow fixed-bed reactor equipped with a Ni-Co-Pd/γ-Al2O3 catalyst. The effects of the hydrogenation temperature and the H/oil molar ratio on the moisture content, calorific value, viscosity and cetane number of the refined bio-oils were investigated at the pressure of 2×106 Pa, It was shown that the yield of the refined oil reached 86.1%, and the calorific value and cetane number were increased by 17.94% and 71.2% respectively, while the viscosity was decreased by 66.32% at the temperature of 300 ℃, the pressure of 2×106 Pa and the H/oil mol ratio of 120. The elemental analysis and GC-MS analysis results of the bio-oil before and after hydrogenation show that the H/C mol ratio was increased from 1.55 to 1.97, while the oxygen, nitrogen and sulfur contents were significantly decreased. The deoxidation degree reached 80.46%. The amounts of organic acids, esters, ketones and aldehyde in the refined oils were obviously decreased, while those of alcohols and alkanes were markedly increased.
-
-
-
[1]
[1] 杨文衍, 曾燕, 罗嘉, 童冬梅, 卿人韦, 范勇, 胡常伟. 微拟球藻热解及其催化热解制备生物油研究[J]. 燃料化学学报, 2011, 39(9): 664-669. (YANG Wen-yan, ZENG Yan, LUO Jia, TONG Dong-mei, QING Ren-wei, FAN Yong, HU Chang-wei. Production of bio-oil by direct and catalytic pyrolysis of Nannochloropsissp[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 664-669.)
-
[2]
[2] WILDSCHUT J, ARENTZ J, RASRENDRA C B, VENDERBOSCH R H, HEERESA H J. Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction[J]. Environ Prog Sustain Energy, 2009, 28(3): 450-460.
-
[3]
[3] ELLIOTT D C, HART T R, GARY G, NEUENSCHWANDER G G, ROTNESS L J, ZACHER A H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products[J]. Environ Prog Sustain Energy, 2009, 3(28): 441-449.
-
[4]
[4] DONNIS B, EGEBERG RG, BLOM P, GRΦNKNUDSEN J. Hydroprocessing of bio-oils and oxygenates to hydrocarbons: Understanding the reaction routes[J]. Top Catal, 2009, 52(3): 229-240.
-
[5]
[5] ELLIOTT D C, HART T R. Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust[J]. Energy Fuels, 2012, 26(6): 3891-3896.
-
[6]
[6] GANDARIAS I, BARRIO V L, REQUIES J. From biomass to fuels: Hydrotreating of oxygenated compounds[J]. Int J Hydrogen Energy, 2008, 33(13): 3485-3488.
-
[7]
[7] 杨骏, 陈满英, 陈运红, 孙玉川. Ni-Mo/Al2O3加氢脱氧催化剂的研究[J]. 现代化工, 2005, 25(21): 119-122. (YANG Jun, CHEN Man-ying, CHEN Yun-hong, SUN Yu-chuan. Study of Ni-Mo/Al2O3 catalyst for hydrodeoxygenation[J]. Modern Chemical Industry, 2005, 25(21): 119-122.)
-
[8]
[8] 徐春明, 杨朝合. 石油炼制工程[M]. 第四版. 北京: 石油工业出版社, 2009. (XU Chun-ming, YANG Chao-he. Petroleum refining engineering[M]. Fourth Edition.Beijing: Petroleum Industry Publishing House, 2009.)
-
[9]
[9] BROWN H C, BROWN C A. New, Highly active metal catalysts for the hydrolysis of borohydride[J]. Journal of American Chemical, 1962, 84(8): 1493-1494.
-
[10]
[10] WEITKAMP J. Catalytic hydrocracking-mechanisms and versatility of the process[J]. Chem Cat Chem, 2012, 4(3): 292-306.
-
[11]
[11] TRAN N H, BARTLETT J R, KANNANGARA G S K, MILEV A S, H. VOLK B H, WILSON M A. Catalytic upgrading of biorefinery oil from micro-algae[J]. Fuel, 2010, 89(2): 265-274.
-
[12]
[12] 苏贻勋, 李林. 催化裂化柴油中芳烃结构与十六烷值的关系[J]. 齐鲁石油化工, 1993, 21(3): 222-224. (SU Yi-xun, LI Lin. Relationship of aromatics structure composed and cetane number on FCC diesel[J]. Qilu Petrochemical, 1993, 21(3): 222-224.)
-
[13]
[13] 陆强, 李文志, 张栋, 朱锡锋. 锯末快速热解气的在线催化裂解[J]. 化工学报, 2009, 60(2): 351-357. (LU Qiang, LI Wen-zhi, ZHANG Dong, ZHU Xi-feng. In situ catalytic cracking of sawdust fast pyrolysis vapors[J]. Journal of Chemical Industry and Engineering(China), 2009, 60(2): 351-357.
-
[14]
[14] SANTILLAN-JIMENEZ E, CROCKER M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation[J]. J Chem Technol Biotechnol, 2012, 87(8): 1041-1050.
-
[15]
[15] DIEBOLD J P. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. Golden, Colorado: National Renewable Energy Laboratory, 2000.
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[7]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[8]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[12]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[13]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[14]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[15]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[16]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[17]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[18]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[19]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[20]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(534)
- HTML views(42)