Citation: ZHONG Wei-cheng, GUO Qing-jie, WANG Xu-yun, ZHANG Liang. Catalytic hydroprocessing of the fast pyrolysis bio-oil of Chlorella[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(5): 571-578. shu

Catalytic hydroprocessing of the fast pyrolysis bio-oil of Chlorella

  • Corresponding author: GUO Qing-jie, 
  • Received Date: 31 December 2012
    Available Online: 21 February 2013

    Fund Project: 海洋可再生能源专项资金(GHME2001SW02) (GHME2001SW02) 山东省科技攻关项目(2008GG10006010, 2009GG10007001)。 (2008GG10006010, 2009GG10007001)

  • Catalytic hydroprocessing of the bio-oil obtained through fast pyrolysis of Chlorella was carried out in a bench-scale continuous-flow fixed-bed reactor equipped with a Ni-Co-Pd/γ-Al2O3 catalyst. The effects of the hydrogenation temperature and the H/oil molar ratio on the moisture content, calorific value, viscosity and cetane number of the refined bio-oils were investigated at the pressure of 2×106 Pa, It was shown that the yield of the refined oil reached 86.1%, and the calorific value and cetane number were increased by 17.94% and 71.2% respectively, while the viscosity was decreased by 66.32% at the temperature of 300 ℃, the pressure of 2×106 Pa and the H/oil mol ratio of 120. The elemental analysis and GC-MS analysis results of the bio-oil before and after hydrogenation show that the H/C mol ratio was increased from 1.55 to 1.97, while the oxygen, nitrogen and sulfur contents were significantly decreased. The deoxidation degree reached 80.46%. The amounts of organic acids, esters, ketones and aldehyde in the refined oils were obviously decreased, while those of alcohols and alkanes were markedly increased.
  • 加载中
    1. [1]

      [1] 杨文衍, 曾燕, 罗嘉, 童冬梅, 卿人韦, 范勇, 胡常伟. 微拟球藻热解及其催化热解制备生物油研究[J]. 燃料化学学报, 2011, 39(9): 664-669. (YANG Wen-yan, ZENG Yan, LUO Jia, TONG Dong-mei, QING Ren-wei, FAN Yong, HU Chang-wei. Production of bio-oil by direct and catalytic pyrolysis of Nannochloropsissp[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 664-669.)

    2. [2]

      [2] WILDSCHUT J, ARENTZ J, RASRENDRA C B, VENDERBOSCH R H, HEERESA H J. Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction[J]. Environ Prog Sustain Energy, 2009, 28(3): 450-460.

    3. [3]

      [3] ELLIOTT D C, HART T R, GARY G, NEUENSCHWANDER G G, ROTNESS L J, ZACHER A H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products[J]. Environ Prog Sustain Energy, 2009, 3(28): 441-449.

    4. [4]

      [4] DONNIS B, EGEBERG RG, BLOM P, GRΦNKNUDSEN J. Hydroprocessing of bio-oils and oxygenates to hydrocarbons: Understanding the reaction routes[J]. Top Catal, 2009, 52(3): 229-240.

    5. [5]

      [5] ELLIOTT D C, HART T R. Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust[J]. Energy Fuels, 2012, 26(6): 3891-3896.

    6. [6]

      [6] GANDARIAS I, BARRIO V L, REQUIES J. From biomass to fuels: Hydrotreating of oxygenated compounds[J]. Int J Hydrogen Energy, 2008, 33(13): 3485-3488.

    7. [7]

      [7] 杨骏, 陈满英, 陈运红, 孙玉川. Ni-Mo/Al2O3加氢脱氧催化剂的研究[J]. 现代化工, 2005, 25(21): 119-122. (YANG Jun, CHEN Man-ying, CHEN Yun-hong, SUN Yu-chuan. Study of Ni-Mo/Al2O3 catalyst for hydrodeoxygenation[J]. Modern Chemical Industry, 2005, 25(21): 119-122.)

    8. [8]

      [8] 徐春明, 杨朝合. 石油炼制工程[M]. 第四版. 北京: 石油工业出版社, 2009. (XU Chun-ming, YANG Chao-he. Petroleum refining engineering[M]. Fourth Edition.Beijing: Petroleum Industry Publishing House, 2009.)

    9. [9]

      [9] BROWN H C, BROWN C A. New, Highly active metal catalysts for the hydrolysis of borohydride[J]. Journal of American Chemical, 1962, 84(8): 1493-1494.

    10. [10]

      [10] WEITKAMP J. Catalytic hydrocracking-mechanisms and versatility of the process[J]. Chem Cat Chem, 2012, 4(3): 292-306.

    11. [11]

      [11] TRAN N H, BARTLETT J R, KANNANGARA G S K, MILEV A S, H. VOLK B H, WILSON M A. Catalytic upgrading of biorefinery oil from micro-algae[J]. Fuel, 2010, 89(2): 265-274.

    12. [12]

      [12] 苏贻勋, 李林. 催化裂化柴油中芳烃结构与十六烷值的关系[J]. 齐鲁石油化工, 1993, 21(3): 222-224. (SU Yi-xun, LI Lin. Relationship of aromatics structure composed and cetane number on FCC diesel[J]. Qilu Petrochemical, 1993, 21(3): 222-224.)

    13. [13]

      [13] 陆强, 李文志, 张栋, 朱锡锋. 锯末快速热解气的在线催化裂解[J]. 化工学报, 2009, 60(2): 351-357. (LU Qiang, LI Wen-zhi, ZHANG Dong, ZHU Xi-feng. In situ catalytic cracking of sawdust fast pyrolysis vapors[J]. Journal of Chemical Industry and Engineering(China), 2009, 60(2): 351-357.

    14. [14]

      [14] SANTILLAN-JIMENEZ E, CROCKER M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation[J]. J Chem Technol Biotechnol, 2012, 87(8): 1041-1050.

    15. [15]

      [15] DIEBOLD J P. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. Golden, Colorado: National Renewable Energy Laboratory, 2000.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(0)
  • Abstract views(534)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return