Citation: SHUAI Chao, BIN Yi-yuan, HU Song, XIANG Jun, SUN Lu-shi, SU Sheng, XU Kai, XU Chao-fen. Kinetic models of coal char steam gasification and sensitivity analysis of the parameters[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(5): 558-564. shu

Kinetic models of coal char steam gasification and sensitivity analysis of the parameters

  • Corresponding author: HU Song, 
  • Received Date: 3 October 2012
    Available Online: 6 December 2012

    Fund Project: 国家自然科学基金(51176062, 21176098) (51176062, 21176098) 国家重点基础研究发展规划(973计划, 2010CB227003)。 (973计划, 2010CB227003)

  • The steam gasification of XLT, FG and JC coal chars was studied by isothermal thermogravimetric analysis. The relationship between reaction rate and carbon conversion of three coal chars was simulated by shrinking core model(SCM), traditional model(TM) and random pore model(RPM). The results show that TM is the best one overall for three coals. SCM and RPM are not suitable to describe the gasification process of low-rank XLT coal char, though they have satisfied simulation results to the other two coal chars with higher coal rank. The kinetic parameters were calculated by three models, and the reason for their differences was analyzed. Based on the sensitivity analysis method, the error of the prediction with the change of parameters was studied. It is shown that the apparent reaction rate k is a sensitive parameter, and the reaction order n in the TM and the structural parameter ψ in the RPM are less sensitive parameters.
  • 加载中
    1. [1]

      [1] 张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究——水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(03): 265-269. (ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yan. Study on reactivity of Chinese anthracite chars gasification —Comparison of reactivity between steam and CO2 gasificaiton[J]. Journal of Fuel Chemistry and Technology, 2006, 34(03): 265-269.)

    2. [2]

      [2] ZHANG L, HUANG J, FANG Y, WANG Y. Gasification reactivity and kinetics of typical chinese anthracite chars with steam and CO2[J]. Energy Fuels, 2006, 20(3): 1201-1210.

    3. [3]

      [3] EVERSON R C, NEOMAGUS H W J P, KASAINI H, NJAPHA D. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7-8): 1076-1082.

    4. [4]

      [4] WU S, GU J, LI L, WU Y, GAO J. The reactivity and kinetics of yanzhou coal chars from elevated pyrolysis temperatures during gasification in steam at 900-1200℃[J]. Process Saf Environ Prot, 2006, 84(6): 420-428.

    5. [5]

      [5] 王鹏, 文芳, 步学朋, 刘玉华, 邓一英. 煤焦与CO2及水蒸气气化反应的研究[J]. 煤气与热力, 2005, 25(03): 1-6. (WANG Peng, WEN Fang, BU Xue-peng, LIU Yu-hua, DENG Yi-ying. Study on gasification reaction of coal char with CO2 and water vapour[J]. Gas & Heat, 2005, 25(03): 1-6.)

    6. [6]

      [6] 向银花, 王洋, 张建民, 黄戒介, 赵建涛. 煤气化动力学模型研究[J]. 燃料化学学报, 2002, 30(01): 21-26. (XIANG Yin-hua, WANG Yang, ZHANG Jian-min, HUANG Jie-jie, ZHAO Jian-tao. A study on kinetic models of char gasification[J]. Journal of Fuel Chemistry and Technology, 2002, 30(01): 21-26.)

    7. [7]

      [7] FERMOSO J, ARIAS B, PEVIDA C, PLAZA M, RUBIERA F, PIS J. Kinetic models comparison for steam gasification of different nature fuel chars[J]. J Therm Anal Calorim, 2008, 91(3): 779-786.

    8. [8]

      [8] FERMOSO J, GIL M V, GARCI A S, PEVIDA C, PIS J J, RUBIERA F. Kinetic parameters and reactivity for the steam gasification of coal chars obtained under different pyrolysis temperatures and pressures[J]. Energy Fuels, 2011, 25(8): 3574-3580.

    9. [9]

      [9] 蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报(自然科学版), 2008, 44(01): 9-16. (CAI Yi, XING Yan, HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University(Natural Science), 2008, 44(01): 9-16.)

    10. [10]

      [10] 乔瑜, 徐明厚, H.Green W. 基于敏感性分析的H2/O2反应机理最优简化[J]. 中国电机工程学报, 2006, 26(04): 16-20. (QIAO Yu, XU Ming-hou, WILLIAM H. Green. Optimally-reduced kinetic models of H2/O2 combustion mechanism based on sensitivity analysis[J]. Proceedings of the CSEE, 2006, 26(04): 16-20.)

    11. [11]

      [11] SALTELLI A, TARANTOLA S, CAMPOLONGO F, RATTO M. Sensitivity analysis in practice: A guide to assessing scientific models[M]. Wiley: 2004.

    12. [12]

      [12] WEN C Y. Noncatalytic heterogeneous solid-fluid reaction models[J]. Industrial & Engineering Chemistry, 1968, 60(9): 34-54.

    13. [13]

      [13] 周静, 周志杰, 龚欣, 于遵宏. 煤焦二氧化碳气化动力学研究(I)等温热重法[J]. 煤炭转化, 2002, 25(4): 66-67. (ZHOU Jing, ZHOU Zhi-jie, GONG Xin, YU Zun-hong. Study of char-CO2 gasification(I) by isothermal thermogravimetry[J]. Coal Convertion, 2002, 25(4): 66-67.)

    14. [14]

      [14] BHATIA S K, PERLMUTTER D D. A random pore model for fluid-solid reactions: I Isothermal, kinetic control[J]. AIChE Journal, 1980, 26(3): 379-386.

    15. [15]

      [15] YE D P, AGNEW J B, ZHANG D K. Gasification of a south australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219.

    16. [16]

      [16] MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989, 68(11): 1461-1475.

    17. [17]

      [17] 费华, 胡松, 向军, 孙路石, 石金明, 付鹏, 陈刚, 苏胜. 随机孔模型研究煤焦O2/CO2燃烧动力学特征[J]. 化工学报, 2011, 62(01): 199-205. (FEI Hua, HU Song, XIANG Jun,SUN Lu-shi, SHI Jin-ming, FU Peng, CHEN Gang, SU Sheng. Kinetics of coal char combustion with random pore model under O2/CO2 atmosphere[J]. Journal of Chemical Industry and Engineering (China), 2011, 62(01): 199-205.)

    18. [18]

      [18] MORIMOTO T, OCHIAI T, WASAKA S, ODA H. Modeling on pore variation of coal chars during CO2 gasification associated with their submicropores and closed pores[J]. Energy Fuels, 2005, 20(1): 353-358.

    19. [19]

      [19] LIU H, LUO C, KANEKO M, KATO S, KOJIMA T. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J]. Energy Fuels, 2003, 17(4): 961-970.

    20. [20]

      [20] ADANEZ J, DIEGO L F D. Reactivity of lignite chars with CO2: Influence of the mineral matter[J]. Int Chem Eng, 1993, 33(4): 656-662.

    21. [21]

      [21] KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel, 2006, 85(2): 163-169.

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(0)
  • Abstract views(526)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return