Citation: LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 491-498. shu

Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant

  • Corresponding author: DUAN Yu-feng, 
  • Received Date: 2 August 2012
    Available Online: 24 October 2012

    Fund Project: 国家自然科学基金(51076030) (51076030) 江苏省环保科研课题基金(201113) (201113) 煤燃烧国家重点实验室开放基金(FSKLCC1002). (FSKLCC1002)

  • The Ontario Hydro Method (OHM) was used to sample and analyze the mercury concentration in flue gas before and after ESP and WFGD in a 300 MW power plant. Mercury content in coal, bottom slag, fly ash of ESP, adsorbent (limestone) and desulfurization product (gypsum) was detected by DMA80. Mercury mass balance was calculated based on the online measurements through the boiler system. Factors affecting the distribution, transformation and removal of mercury in flue gas were discussed. The results show that the gaseous mercury (Hg0 and Hg2+) in flue gas accounts for about 95% of total mercury, while mercury in the bottom ash can be neglected. More than 95% of Hgp and a little gaseous phase mercury (Hg0 and Hg2+)were removed by ESP. The efficiencies to remove total mercury by ESP range from 12.77% to 17.38%. A removal efficiency for Hg2+(g) reaches up to 79.93%~90.53% by WFGD, however, the content of Hg0 after WFGD increases because part of oxidized mercury is reduced to elemental mercury during WFGD. The efficiencies to remove total mercury by WFGD range from 9.68% to 29.36%. ESP and WFGD can remove all of the Hgp and a majority of Hg2+ with a total mercury removal efficiency of 25.38%~38.38%. In general, the demercuration in the conventional devices of ESP and WFGD is not high, which perhaps is owing to the lower concentration of Cl in feed coal.
  • 加载中
    1. [1]

      [1] ZHENG Y J, JENSEN A D, WINDELIN C, JENSEN F. Review of technologies for mercury removal from flue gas from cement production processes[J]. Prog Energy Combust Sci, 2012, 38(5): 599-629.

    2. [2]

      [2] US EPA. A study of hazardous air pollutant emissions from electric utility steam generating units: Final report to congress, EPA-453/R-98-004a. Washington, D.C.: U.S. EPA, February 1998.

    3. [3]

      [3] 蒋靖坤, 郝吉明, 吴烨, STREETS D G, 段雷, 田贺忠. 中国燃煤汞排放清单的初步建立[J]. 环境科学, 2005, 26(2): 34-39. (JIANG Jing-kun, HAO Ji-ming, WU Ye, STREETS D G, DUAN Lei, TIAN He-zhong. Development of mercury emission inventory from coal combustion in China[J]. Environmental Science, 2005, 26(2): 34-39.)

    4. [4]

      [4] STREETS D G, HAO J M, WU Y, JIANG J K, CHAN M, TIAN H Z, FENG X B. Anthropogenic mercury emissions in China[J]. Atmos Environ, 2005, 39(40): 7789-7806.

    5. [5]

      [5] WU Y, WANG S X, STREETS D G, HAO J M,CHAN M, JIANG J K. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environ Sci Technol, 2006, 40(17): 5312-5318.

    6. [6]

      [6] 胡长兴, 周劲松, 何胜, 骆仲泱, 岑可法. 全国燃煤电站汞排放量估算[J]. 热力发电, 2010, 39(2): 1-4. (HU Chang-xing, ZHOU Jin-song, HE Sheng, LUO Zhong-yang, CEN Ke-fa.Estimation of mercury emission from coal-fired power plants in China[J]. Thermal Power Generation, 2010, 39(2): 1-4.)

    7. [7]

      [7] TIAN H Z, WANG Y, XUE Z G, CHENG K, QU Y P, CHAI F H, HAO J M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China,1980-2007[J]. Atmos Chem Phys, 2010, 10(9): 11905-11919.

    8. [8]

      [8] US EPA. Standards of performance for new and existing stationary sources: Electric utility stream generating units[S]. Washington, D.C.: U.S. EPA, March 2005.

    9. [9]

      [9] WANG S X, ZHANG L, LI G H, WU Y, HAO J M, PIRRONE N, SPROVIERI F, ANCORA M P. Mercury emission and speciation of coal-fired power plants in China[J]. Atmos Chem Phys, 2010, 10(3): 1183-1192.

    10. [10]

      [10] US EPA. Standard test method for elemental, oxidized, particle-bound, and total mercury in flue gas generated from coal-fired stationary sources (Ontario Hydro Method)[S]. Washington, D.C.: U.S. EPA, September 2001.

    11. [11]

      [11] 王运军. 燃煤烟气汞形态转化及汞吸附机理研究. 南京: 东南大学博士学位论文, 2010. (WANG Yun-jun. Study on mercury speciation transformation and adsorption mechanism in coal-fired flue gas. Nanjing: Southeast University, 2010.)

    12. [12]

      [12] YOKOYAMA T, ASAKURA K, MATSUDA H, ITO S, NODA N. Mercury emissions from a coal fired power plant in Japan[J]. Sci Total Environ, 2000, 259 (1-3): 97-103.

    13. [13]

      [13] 齐立强. 燃煤锅炉微细颗粒电除尘特性及电场逃逸机理的研究. 北京: 华北电力大学博士学位论文, 2006. (QI Li-qiang. Study on the electrostatic precipitatability and escape mechanism of the fine particulate from electrostatic precipitator of coal-fired boilers. Beijing: North China Electric Power University, 2006.)

    14. [14]

      [14] KILGROE J D, SEDMAN C B, SRIVASTAVA R K, RYAN J V, LEE C W, THORNELOE S A. Control of mercury emissions from coal-fired electric utility boilers: Interim report,EPA-600/R-01-109. Washington, D.C.:U.S. EPA, December, 2001.

    15. [15]

      [15] RICHARDSON M K, BLYTHE G M, GOLDEN D. Mercury stability in FGD byproducts. In: Combined Power Plant Air Pollutant Control Mega Symposium,Washington, D.C.,May, 2003.

    16. [16]

      [16] CHANG J C, GHORISHI S B.Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber[J]. Environ Sci Technol, 2003, 37(24): 5763-5766.

    17. [17]

      [17] GOODARZI F. Characteristics and composition of fly ash from Canadian coal-fired power plants[J]. Fuel, 2006, 85(10/11): 1418-1427.

    18. [18]

      [18] WU S J, UDDI M A, SASAOKA E. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J]. Fuel, 2006, 85(2): 213-218.

    19. [19]

      [19] KELLIE S, CAO Y, DUAN Y F, LI L C, CHU P, MEHTA A, CARTY R, RILEY J T, PAN W P. Factors affecting mercury speciation in a 100-MW coal-fired boiler with low-NOx burners[J]. Energy Fuels, 2005, 19(3): 800-806.

    20. [20]

      [20] MILLER S M, NESS S R, WEBER G F, ERICKSON T A, HASSETT D J, HAWTHORNE S B, KATRINAK K A, LOUIE P K. A comprehensive assessment of toxic emissions from coal-fired power plants: Phase I results from the U.S. department of energy study. Grand Forks, North Dakota: Energy and Environmental Research Center (EERC), University of North Dakota, September 1996.

  • 加载中
    1. [1]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    4. [4]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    5. [5]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    8. [8]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    9. [9]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    10. [10]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    11. [11]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Xiaoyan Wang Yan Qi Lin Tang Shuwen Wang Huiling Wen Hongtao Gao . Improvement of the Quality Construction of Basic Chemistry Experimental Teaching Center under the Background of Education Digitization. University Chemistry, 2024, 39(7): 40-48. doi: 10.12461/PKU.DXHX202404124

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Rong Lai Jie Li Xianfang Xu Shui Hu Tao Chen Houjin Li Guping Hu Hongyan Chen Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115

    16. [16]

      Yonghong Ruan Yuhua Weng Pingping Wu Yinyun Lü Zhaobin Chen Zhiqiang Dong Yiru Wang Huijun Zhang Lina Wu Ruming Yuan Yanping Ren Xiaoyu Cao Shunliu Deng . Deepening the Reform of Experimental Teaching System and Promoting the High Quality Development of National Demonstration Center for Experimental Education: Construction and Achievements of National Demonstration Center for Experimental Chemistry Education (Xiamen University). University Chemistry, 2024, 39(7): 237-246. doi: 10.12461/PKU.DXHX202406096

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return