Citation: MA Shuang-chen, WANG Meng-xuan, SONG Hui-hui, ZANG Bin. Influence of liquid coexisting components on CO2 desorption from decarburization absorbing solution by ammonia method[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 477-483. shu

Influence of liquid coexisting components on CO2 desorption from decarburization absorbing solution by ammonia method

  • Corresponding author: MA Shuang-chen, 
  • Received Date: 11 September 2012
    Available Online: 23 November 2012

    Fund Project: 国家自然科学基金(21176064). (21176064)

  • The reaction mechanisms of SO2, NOx, CO2 with ammonia solution were described. And the liquid coexisting components related to the desorption of simulated decarburization solution, including (NH4)2SO3, (NH4)2SO4, NH4NO3, NaCl, NH4Cl and (NH4)2CO3, were analyzed. The results show that the desorption of CO2 is affected by the mass fraction of liquid phase coexistence components, pH of solution and surface tension. Most of liquid coexisting components could reduce CO2 desorption of decarburization solution. The restraining effect of liquid coexisting components with the mass fraction less than 10% in the decarburization absorbent liquid on CO2 desorption is as follows: (NH4)2SO3>NH4NO3>(NH4)2SO4 >NaCl>(NH4)2CO3. It is necessary to remove the impurities in flue gas before CO2 capture, because the purities are harmful for CO2 desorption due to the hazardous effects on the physical and chemical characteristics of decarburization solution.
  • 加载中
    1. [1]

      [1] REINER D, LIANG X. Opportunities and hurdles in applying CCS technologies in China-with a focus on industrial stakeholders[J]. Energy Procedia, 2009, 1(1): 4827-4834.

    2. [2]

      [2] DERKS P W J, VERSTEEG G F. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions[J]. Energy Procedia, 2009, 1: 1139-1146.

    3. [3]

      [3] PEHNT M, HENKEL J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants[J]. Int J Green Gas Con, 2009, 3(1): 49-66.

    4. [4]

      [4] IPCC, IPCC Fourth Assessment Report (AR4). Cambridge: Cambridge University Press, 2007.

    5. [5]

      [5] SCHIMEL D S, HOUSE J I, HIBBARD K A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414: 169-172.

    6. [6]

      [6] THE CLIMATE GROUP. CCS in China: Status, challenges and opportunities . Beijing, 2010

    7. [7]

      [7] RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil fuel power plants with CO2 capture and storage[J]. Energy Policy, 2007, 35: 4444-4454

    8. [8]

      [8] IPCC. Carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005.

    9. [9]

      [9] PAZUKI G R, PAHLEVANZADEH H and MOHSENI AHOOEI A. Solubility of CO2 in aqueous ammonia solution at low temperature[J]. Calphad, 2006, 30(1): 27-32.

    10. [10]

      [10] RESNIK K R, YEH J T, PENNLINE H W. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx[J]. Envir Technol Manag, 2004, 4(1/2): 89-103.

    11. [11]

      [11] 蒋丽芬, 娄爱娟. 多功能脱硫塔在氨法烟气脱硫中的应用[J]. 化工进展, 2011, 30(12): 2804-2808. (JIANG Li-fen, LOU Ai-juan. Application of multifunctional desulphurization tower in flue gas desulphurization by ammonia method[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2804-2808.)

    12. [12]

      [12] AHMED A B,OSAMA I F,NOUSHAD K, SERAJ A G, ANDRZEJ C, JANUSZ L, ANDRZEJ P, BOGDAN T, ZBIGNIEW Z. Electron beam flue gas treatment technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels[J]. Fuel, 2008, 28(3): 1446-1452.

    13. [13]

      [13] WHITTAKER A G, MOUNT A R, HEAL M R. Physical chemistry[M]. Beijing: Science Press, 2001.

    14. [14]

      [14] PRADHAN M P, JOSHI J B. Absorption of NOx gas in aqueous NaOH solutions: Selectivity and optimization[J]. AIChE J. 1999, 45(1): 38-50.

    15. [15]

      [15] THOMAS D,VANDERSCHUREN J. Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions[J].Se Purif Technol, 2000, 18(1): 37-45.

    16. [16]

      [16] AOKI M, TNAKA H, KOMIYAMA H, NOUE H. Simultaneous absorption of NO and NO2 into alkaline solutions[J]. J Chem Eng Jpn, 1982, 15(5): 362-367.

    17. [17]

      [17] DE PAIVA J L, KACHAN G C. Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column[J]. Chem Eng Process, 2004, 43(7): 941-948.

    18. [18]

      [18] 马双忱, 孙云雪, 赵毅, 方文武, 韩剑, 梁丕昭. 氨水捕集模拟烟气中二氧化碳的实验与理论研究[J].化学学报, 2011, 69(12): 1469-1474. (MA Shuang-chen, SUN Yun-xue, Zhao Yi, FANG Wen-wu, HAN Jian, LIANG Pi-zhao. Experimental and mechanism research on CO2 capture from simulating flue gas using ammonia solution[J] Acta Chim Sinica, 2011, 69(12): 1469-1474.)

    19. [19]

      [19] 刘少敏. 碳酸平衡规律在水质分析中碱度测定的应用[J]. 淮南职业技术学院学报, 2002, 2(2): 75-77. (LIU Shao-min. Application on the balance of carbonic acid in the alkalinity measurement of the water analysis[J]. Journal of Huainan vocational & technical college, 2002, 2(2): 75-77.

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    17. [17]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    20. [20]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

Metrics
  • PDF Downloads(0)
  • Abstract views(461)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return