Citation: YU Feng, GUO Min, WANG Xu, PAN Da-hai, LI Rui-feng. Synthesis of well-ordered SO42-/ZrO2-SiO2 materials in bi-acid system[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 456-462. shu

Synthesis of well-ordered SO42-/ZrO2-SiO2 materials in bi-acid system

  • Corresponding author: LI Rui-feng, 
  • Received Date: 17 December 2012
    Available Online: 3 February 2013

    Fund Project: Supported by the Natural Science Foundation of China (NSFC, 50772070, 51172154) (NSFC, 50772070, 51172154) the Research Fund for the Doctoral Program of Higher Education (20121402120011) (20121402120011)the Science and technological program of Shanxi Province (20110008) (20110008)

  • A series of solid acid SO42-/ZrO2-SiO2 catalysts with a fixed Zr/Si molar ratio of 1.1 were successfully synthesized in one-pot through changing the H2SO4/HCl volume ratio during the self-assembly process. X-ray diffraction (XRD), UV-visible DRS, and high resolution transmission electron microscopy (HRTEM) results demonstrate that all the resultant catalysts exhibit a highly ordered 2D hexagonal mesostructures with zirconia particles of homogenously distributed tetragonal nanocrystallites in mesoporous walls. N2 adsorption and pyridine in-situ Fourier-transformed infrared spectra (FT-IR) further reveal that the surface area, pore volume, pore diameter and the relative strength of Lewis and Brønsted acidic sites of resultant catalysts can be controlled by tuning the H2SO4/HCl volume ratio during the synthesis. Different from pure mesoporous SBA-15 material, the mesoporous SO42-/ZrO2-SiO2 materials prepared in this work exhibit high structural stability and catalytic activity in n-pentane isomerization, which is attributed not only to hydrochloric acid that facilitates the formation of mesoporous silica but also to sulfuric acid that helps to stabilize the structure of catalysts and produce acid sites. The methods proposed in this work provide an important approach to synthesize ordered solid acid catalysts with high stability and potential applications in various acidic-catalyzed reactions.
  • 加载中
    1. [1]

      [1] KRESGE C T, LEONOWICZ M E, ROTH W J, VARULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.

    2. [2]

      [2] CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev. 1997, 97(6): 2373-2419.

    3. [3]

      [3] ZHAO D, FENG J, HUO Q, MELOSSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.

    4. [4]

      [4] CHEN X R, JU Y H, MOU C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with catalytic activity for biodiesel via esterification[J]. J Phys Chem C, 2007, 111(50): 18731-18737.

    5. [5]

      [5] HWANG C C, MOU C Y. Alumina-promoted sulfated mesoporous zirconia catalyst[J]. J. Phys. Chem. C, 2009, 113(13): 5212-5221.

    6. [6]

      [6] WANG Y, LEE K Y, CHOI S, LIU J, WANG L Q, PEDEN C H F, Grafting sulfated zirconia on mesoporous silica[J]. Green Chem, 2007, 9(6): 540-544.

    7. [7]

      [7] CHEN C, LI T, CHENG S, LIN H, BHONGALE C J, MOU C Y, Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica[J]. Micropor Mesopor Mater, 2001, 50(2-3): 201-208.

    8. [8]

      [8] CHANG B B, FU J, TIAN Y L, DONG X P. Mesoporous solid acid catalysts of sulfated zirconia/SBA-15 derived from a vapor-induced hydrolysis route[J]. Appl Catal A, 2012, 437-438: 149-154.

    9. [9]

      [9] LI F X, YU F, LI Y L, LI R F, XIE K C. Direct synthesis of Zr-SBA-15 mesoporous molecular sieves: characterization and catalytic activities after sulfated[J]. Micropor Mesopor Mater, 2007, 101(1-2): 250-255.

    10. [10]

      [10] LI R F, YU F, LI F X, ZHOU M M, XU B S, XIE K C. One-pot synthesis of superacid catalytic material SO42-/ZrO2-SiO2 with thermostable well-ordered mesoporous structure[J]. J Solid State Chem, 2009, 182(5): 991-994.

    11. [11]

      [11] CIESLA U, FRBA M, STUCKY G, SCHVTH F. Highly ordered porous zirconias from surfactant-controlled syntheses: Zirconium oxide-sulfate and zirconium oxo phosphate[J] Chem Mater, 1999, 11(2): 227-234.

    12. [12]

      [12] ZHAO D, HUO Q, FENG J, CHMELKA B, STUCKY G. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120: 6024-6036.

    13. [13]

      [13] TUEL A, GONTIE S, TEISSIER R. Zirconium containing mesoporous silicas: New catalysts for oxidation reactions in the liquid phase[J]. Chem Commun, 1996, (5): 651-652.

    14. [14]

      [14] LI M, FENG Z, XIONG G, XIONG G, YING P, XIN Q, LI C. Phase transformation in the surface region of zirconia detected by UV raman spectroscopy[J]. J Phys Chem B, 2001, 105(34): 8107-8111.

    15. [15]

      [15] FERNNDEZ L[WTBZ][WTB1]PEZ E, ESCRIBANO V S, PANIZZA M, CARNASCIALI M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001, 11(7): 1891-1897.

    16. [16]

      [16] YAMAGUCHI T. Recent progress in solid superacid[J]. Appl Catal, 1990, 61(1): 1-25.

    17. [17]

      [17] BAERTSCH C D, SOLED S L, IGLESIA E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia[J]. J Phys Chem B, 2001, 105(7): 1320-1330.

    18. [18]

      [18] WANG W, WANG J H, CEHN C L. n-Pentane isomerization over promoted SZ/MCM-41 catalysts[J]. Catal Today, 2004, 97(4): 307-313.

    19. [19]

      [19] WANG J H, MOU C Y, Alumina-promoted mesoporous sulfated zirconia: A catalyst for n-butane isomerization[J]. Appl Catal A, 2005, 286(1): 128-136.

    20. [20]

      [20] TANABE K, HATTORI H, YAMAGUCHI T. Crit Rev Surf Chem, 1990, 1: 1.

    21. [21]

      [21] RISCH M A, WOIF E E. Characterization and n-butane isomerization activity of high surface area sulfated zirconia catalysts[J]. Appl Catal A, 1998, 172: L1-L5.

    22. [22]

      [22] HAMMACHE S, GOODWIN J G. Characteristics of the active sites on sulfated zirconia for n-butane isomerization[J]. J Catal, 2003, 218(2): 258-266.

    23. [23]

      [23] CORMA A, GARCIA H. Lewis Acids: From conventional homogeneous to green homogenerous and heterogeneous catalysis[J]. Chem Rev, 2003, 103(11): 4307-4365.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    15. [15]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(0)
  • Abstract views(349)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return