Citation: WU Hao, WANG Meng, LIU Hao, YANG Hong-min. Influence of SO2 on the cyclic calcination and carbonation of calcium-based sorbent for CO2 capture[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 368-373. shu

Influence of SO2 on the cyclic calcination and carbonation of calcium-based sorbent for CO2 capture

  • Corresponding author: YANG Hong-min, 
  • Received Date: 6 September 2012
    Available Online: 8 November 2012

    Fund Project: 国家自然科学基金(50976049) (50976049)江苏省自然科学基金(BK2011788)。 (BK2011788)

  • The effects of SO2 on the cyclic calcination and carbonation characteristics and the cycling stability of calcium-based CaCO3 sorbent for CO2 capture were investigated in a cycling calcination/carbonation system. The results indicated that the capacity of CaCO3 sorbent for CO2 capture decreases with the increase of the number of calcination/carbonation cycling and the addition of SO2 will further reduce the capacity for CO2 capture; moreover, the decrease of the capacity for CO2 capture may be aggravated at higher SO2 concentration. After 10th cycling, the carbonation conversions of the sorbent under SO2 concentration of 0, 0.1% and 0.2% are 25.5%, 16.9% and 5.2%, respectively. SEM characterization results revealed that sulfate products are formed on the surface of CaCO3 particles in the presence of SO2; the sulfate products block the sorbent holes and then reduce the diffusion rate of CO2 into the sorbent, which may then reduce the capacity of the calcium-based sorbent for CO2 capture.
  • 加载中
    1. [1]

      [1] JOCELUN M. CO2 capture and storage:a solution with a future.Total China Scientific Forum. Shanghai: 2009.

    2. [2]

      [2] 池保华. 高温CO2分离的实验与模型研究. 湖北: 华中科技大学, 2006. (CHI Bao-hua. Study of experiment and model on the separate process of high-temperature CO2. Hubei: Huazhong University of Science and Technology, 2006.)

    3. [3]

      [3] 李英杰, 赵长遂. 钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J]. 中国电机工程学报, 2008, 28(2): 55-60. (LI Ying-jie, ZHAO Chang-sui. Carbonation characteristics in calcium-sorbents cyclic calcination/carbonation reaction process[J]. Proceedings of the CSEE, 2008, 28(2): 55-60.)

    4. [4]

      [4] 李英杰, 赵长遂, 段伦博,李庆钊,梁财. 钾钠盐类对钙基CO2吸附剂循环碳酸化的影响[J]. 中国电机工程学报, 2009, 29(2): 52-57. (LI Ying-jie, ZHAO Chang-sui, DUAN Lun-bo, LI Qing-zhao, LIANG Cai. Effect of potassium and sodium salts on cyclic carbonation of calcium-based CO2 sorbent[J]. Proceedings of the CSEE, 2009, 29(2): 52-57.

    5. [5]

      [5] GRASA G S, ALONSO M, ABANADES J C. Sulfation of CaO paticles in a carbonation/calciantion loop to capture CO2[J]. Ind Eng Chem Res, 2008, 47(5): 1630-1635.

    6. [6]

      [6] RYU H-J, GRACE J R, LIM C J. Simultaneous CO2/SO2 capture characteristics of three limestones in a fluidized-bed reactor[J]. Energy Fuels, 2006, 20(4): 1621-1628.

    7. [7]

      [7] MANOVIC V, ANTHONY E J, LONCAREVIC D. SO2 retention by CaO-based sorbent spent in CO2 looping cycles[J]. Ind Eng Chem Res, 2009, 48(14): 6627-6632.

    8. [8]

      [8] 路春美. 钙基材料用于燃煤煅烧固硫过程研究. 济南: 山东大学, 2002. (LU Chun-mei. Calcination and desulfuration reaction process of calcium-based materials during coal combustion. Jinan: Shandong University, 2002.)

    9. [9]

      [9] ABANADES J C, ANTHONY E J, LU D Y, SALVADOR C, ALVAREZ D. Capture of CO2 from combustion gases in a fluidized bed of CaO[J]. AIChE J, 2004, 50(7): 1614-1622.

    10. [10]

      [10] SUN P, GRACE J R, LIM C J, ANTHONY E J. The effect of CaO sintering on cyclic CO2 capture in energy systems [J].AIChE J, 2007, 53(9): 2432-2442.

    11. [11]

      [11] BARKER R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. J Appl Chem Biotechnol, 1974, 24(4/5) : 221- 227.

    12. [12]

      [12] SUN P, GRACE J R, LIM C J, ANTHONY E J. Removal of CO2 by calcium-based sorbents in the presence of SO2[J]. Energy Fuels, 2007, 21(1): 163-170.

    13. [13]

      [13] 陈惠超, 赵长遂, 李英杰. 钙基吸收剂循环煅烧/碳酸化协同捕捉CO2/SO2技术的研究进展[J]. 热能动力工程, 2009, 29(7): 676-682. (CHEN Hui-chao, ZHAO Chang-sui, LI Ying-jie. Progressive study on simultaneous CO2/SO2 capture by Ca-based sorbent during cyclic calcination/carbonation reactions[J]. Journal of Power Engineering, 2009, 29(7): 676-682.)

    14. [14]

      [14] LAURSEN K, DUO W, GRACE J R. Sulfation and reactivation characteristics of nine limestones[J]. Fuel, 2000, 19(200), 153-163.

    15. [15]

      [15] LI Y, BUCHI S, GRACE J R, LIM J C.SO2 removal and CO2 capture by limestone resulting from calcination/sulfation/carbonation cycles[J]. Energy Fuels, 2005, 19(5): 1927-1934.

    16. [16]

      [16] 王世昌, 徐旭常, 姚强. CaO颗粒烟气脱硫反应最佳反应温度的实验研究[J]. 热能动力工程, 2004, 19(5): 454-457. (WANG Shi-chang, XU Xu-chang, YAO Qiang. Experimental investigation of the optimum reaction temperature of flue gas desulfurization reaction involving CaO particles[J]. Journal of Engineering for Thermal Energy & Power, 2004, 19(5): 454-457.)

    17. [17]

      [17] ABANADES J C, ALVAREZ D.Conversion limits in the reaction of CO2 with lime[J]. Energy Fuels, 2003, 17(2): 308-315.

    18. [18]

      [18] 李英杰. 钙基吸收剂循环煅烧/碳酸化捕集CO2研究. 南京:东南大学, 2009. (LI Ying-jie. Research on cyclic calcination/carbonation reaction with ca-based sorbents to CO2 Capture. Nanjing:Southeast University, 2009.)

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    7. [7]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    20. [20]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

Metrics
  • PDF Downloads(0)
  • Abstract views(473)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return