Citation: XU Jin, WANG Xi-tao, FAN Can-can, QIAO Jing. Effect of Pd-modification on photocatalytic H2 evolution over Cd0.8Zn0.2S/SiO2 from glycerol solution[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 323-327. shu

Effect of Pd-modification on photocatalytic H2 evolution over Cd0.8Zn0.2S/SiO2 from glycerol solution

  • Corresponding author: WANG Xi-tao, 
  • Received Date: 6 August 2012
    Available Online: 27 October 2012

    Fund Project: 国家自然科学基金(20806059,21276190)。 (20806059,21276190)

  • A series of Pd/Cd0.8Zn0.2S/SiO2 photocatalysts were prepared by incipient wet impregnation. The catalysts were characterized by XRD, H2-TPR, XPS, and UV-vis DRS and used in the photocatalytic evolution of H2 from glycerol and water mixture; the effects of Pd loading on the surface structure, photo absorption and H2 evolution rate were investigated. The results showed that the chemical interaction between ZnS and CdS results in the formation of Cd0.8Zn0.2S solid solution on the surface of SiO2; after the modification with Pd, the light absorption region of Cd0.8Zn0.2S/SiO2 is expanded and the photo absorption efficiency is enhanced obviously. The loading of Pd exhibits significant influence on the rate of photocatalytic H2 evolution; over 0.5%Pd/Cd0.8Zn0.2S/SiO2 with a Pd loading of 0.5%, the maximum hydrogen production rates under UV light irradiation and under solar-simulated light irradiation reach 831 μmol·h-1 and 153 μmol·h-1, respectively, which are almost 4 times and 2 times higher than those obtained over unmodified Cd0.8Zn0.2S/SiO2 under UV and solar-simulated light irradiation, respectively. The superior photocatalytic performance of Pd/Cd0.8Zn0.2S/SiO2 can be partly related with the improvement of photo absorption, the enhancement in chemisorption and activation of H2O and the increase in separation efficiency of photo induced electron-hole arising from the Pd modification.
  • 加载中
    1. [1]

      [1] SHEN S, ZHAO L, GUO L. ZnmIn2S3+m (m=1-5, integer):A new series of visible-light-driven photocatalysts for splitting water to hydrogen[J]. Int J Hydrogen Energy, 2010, 35(19):10148-10154.

    2. [2]

      [2] YU JG, SHI L. One-pot hydrothermal synthesis and enhanced photocatalytic activity of trifluoroacetic acid modified TiO2 hollow microspheres[J]. J Mol Catal A, 2010, 326(1/2): 8-14.

    3. [3]

      [3] SHEN S, GUO L, CHEN X, REN F, MAO S S. Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS[J]. Int J Hydrogen Energy, 2010, 35(13): 7110-7115.

    4. [4]

      [4] MAEDA K, DOMEN K. New non-oxide photocatalysts designed for overall water splitting under visible light[J]. J Phys Chem C, 2007, 111(22): 7851-7861.

    5. [5]

      [5] KUDO A. Recent progress in the development of visible lightdriven powdered photocatalysts for water splitting[J]. Int J Hydrogen Energy, 2007, 32(14):2673-2678.

    6. [6]

      [6] KOCA A, SAHIN M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution[J]. Int J Hydrogen Energy, 2002, 27(4): 363-367

    7. [7]

      [7] XU X, LU R, ZHAO X, XU S, LEI X, EVANS D G. Fabrication and photocatalytic performance of a ZnxCd1-xS solid solution prepared by sulfuration of a single layered double hydroxide precursor[J]. Appl Catal B, 2011, 102(1/2): 147-156.

    8. [8]

      [8] VILLORIA J A, NAVARRO YERGA R M, AL-ZAHRANI S M, FIERRO J L G. Photocatalytic hydrogen production on Cd1-xZnxS solid solutions under visible light: Influence of thermal treatment[J]. Ind Eng Chem Res, 2010, 49(15): 6854-6861.

    9. [9]

      [9] 彭绍琴, 黄亚辉, 安然, 李越湘. 复合光催化剂CdS-Pt/TiO2低温制备及可见光制氢性能[J]. 功能材料, 2011, 9(42): 1669-1672. (PENG Shao-qing, HUANG Ya-hui, AN Yan, LI Yue-xiang. Preparation of CdS-Pt/TiO2 composite photocatalyst by low temperature method and its performance for photocatalytic hydrogen evolution under visible light irradiation[J]. Journal of Functional Materials, 2011, 9(42): 1669-1672.)

    10. [10]

      [10] 周鹏, 赵成坚, 董文平, 吕功煊. 高分子修饰Pt/ZnS-CdS/SiO2催化剂表面官能团调变与光催化制氢活性关系的研究[J]. 分子催化, 2012, 26(3): 265-274. (ZHOU Peng, ZHAO Chen-jian, DONG Wen-ping, LV Gong-xuan. Studies on photocatalytic hydrogen production relating to the surface functional groups modulation of polymer-modified Pt/ZnS-CdS/SiO2[J]. Journal of Molecular Catalysis(China), 2012, 26(3): 265-274.)

    11. [11]

      [11] SANG H X, WANG X T, FAN C C, WANG F. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route [J]. Int J Hydrogen Energy, 2012, 37(2), 1348-1355.

    12. [12]

      [12] CELEBI S, ERDAMAR A J. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots[J]. J Phys Chem B, 2007, 111(44): 12668-12675.

    13. [13]

      [13] DESHPANDE A, SHAH P, GHOLAP R S. Interfacial and physico-chemical properties of polymer-supported CdS center dot ZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water[J]. J Colloid Interface Sci, 2009, 333(1): 263-268.

    14. [14]

      [14] 李静玲, 陈文哲, 吴波, 黄世震, 林伟, 李世平, 曹小霞, 翁晴, 王敏. 银掺杂TiO2纳米管制备与性能研究[J]. 功能材料, 2012, 8(43): 953-957. (LI Jing-ling, CHEN Wen-zhe, WU Bo, HUANG Shi-zhen, LIN Wei, LI Shi-ping, CAO Xiao-xia, WENG Qing, WANG Min. Synthesis and characterization of Ag-doped TiO2 nanotubes[J]. Journal of Functional Materials, 2012, 8(43): 953-957.)

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    6. [6]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    13. [13]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(485)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return