Citation: HUANG Jin-bao, LIU Chao, TONG Hong, LI Wei-min, WU Dan. Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 285-293. shu

Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose

  • Corresponding author: HUANG Jin-bao, 
  • Received Date: 22 November 2012
    Available Online: 13 January 2013

    Fund Project: 国家自然科学基金(51266002) (51266002)贵州省科学技术基金(黔科合J字[2012]2188号) (黔科合J字[2012]2188号)贵州省"模式识别与智能系统"重点实验室建设项目(黔科合计[2009]4002)。 (黔科合计[2009]4002)

  • In order to understand the pyrolysis mechanism of hemicellulose and to identify the formation pathways of key products during pyrolysis, the pyrolysis processes of O-acetyl-xylopyranose are investigated by using density functional theory methods at B3LYP/6-31G++(d,p) level. In the pyrolysis, O-acetyl-xylopyranose firstly decomposes to form acetic acid and IM1 with an energy barrier of 269.4 kJ/mol, and then IM1 is converted to acyclic carbonyl isomer IM2 with a low energy barrier of 181.8 kJ/mol. IM2 further decomposes to form all sorts of small molecules through four possible pyrolytic reaction pathways. The equilibrium geometries of the reactants, transition states, intermediate and products were fully optimized, and the standard thermodynamic and kinetic parameters of every reaction pathway were calculated. The calculation results show that reaction pathways (2) and (4) are the major reaction channels in pyrolysis of O-acetyl-xylopyranose and the major products are low molecular products such as acetic acid, acetaldehyde, glycolaldehyde, acetone, CO, CO2 and CH4, which is according with related analysis of experimental results.
  • 加载中
    1. [1]

      [1] BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass[J]. Renew Sust Energ Rev, 2000, 4(1): 1-15.

    2. [2]

      [2] MCKENDRY P. Energy production from biomass : Part 1 Overview of biomass[J]. Bioresour Technol, 2002, 83(1): 37-46.

    3. [3]

      [3] MAHINPEV N, MURUGAN P, MANI T, RAINA R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor[J]. Energy Fuels, 2009, 23(5): 2736-2742.

    4. [4]

      [4] 黄金保, 刘朝, 曾桂生, 谢宇, 童红, 李伟民. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815. (HUANG Jin-bao, LIU Chao, ZENG Gui-sheng, XIE Yu, TONG Hong, LI Wei-min. A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 807- 815. )

    5. [5]

      [5] PENG Y, WU S. Fast pyrolysis characteristics of sugarcane bagasse hemicellulose[J]. Cell Chem Technol, 2011, 45(9/10): 605-612.

    6. [6]

      [6] HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. J Anal Appl Pyrolysis, 2007, 78(2): 328-336.

    7. [7]

      [7] 王树荣, 谭洪, 骆仲泱, 王 乐, 岑可法. 木聚糖快速热解试验研究[J]. 浙江大学学报(工学版), 2006, 40(3): 419-423. (WANG Shu-rong, TAN Hong, LUO Zhong-yang, WANG Le, CEN Ke-fa. Experimental research on rapid pyrolysis of xylan[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(3): 419-423.)

    8. [8]

      [8] YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.

    9. [9]

      [9] RAMIAHM V. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose and lignin[J]. J Polym Sci, 1970, 14(5): 1323-1337.

    10. [10]

      [10] 彭云云, 武书彬. TG-FTIR联用研究半纤维素的热裂解特性[J]. 化工进展, 2009, 28(8): 1478-1484. (PENG Yun-yun,WU Shu-bin. Characteristics and kinetics of sugarcane bagasse hemicellulose pyrolysis by TG- FTIR[J]. Chemical Industry and Engineering Process, 2009, 28(8): 1478-1484.)

    11. [11]

      [11] BLASI C D, LANZETTA M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J]. J Anal Appl Pyrolysis, 1997, 40-41: 287-303.

    12. [12]

      [12] LV G, WU S, LOU R. Characteristics of corn stalk hemicellulose in a tubular reactor[J]. Bioresource, 2010, 5(4): 2051-2062.

    13. [13]

      [13] QU T, GUO W, SHEN L, XIAO J, ZHAO K. Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin[J]. Ind Eng Chem Res, 2011, 50(18): 10424-10433.

    14. [14]

      [14] 徐有明. 木材学[M]. 北京: 中国林业出版社, 2006. (XU You-ming. Wood science[M]. Beijing: China Forestry Publishing House, 2006.)

    15. [15]

      [15] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03. Pittsburgh PA :Gaussian, Inc, 2003.

    16. [16]

      [16] 彭云云, 武书彬. 麦草半纤维素的快速热裂解实验研究[J]. 燃料化学学报, 2011, 39(1): 21-25. (PENG Yun-yun. WU Shu-bin. Fast pyrolysis of hemicellulose in wheat straw[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 21-25.)

    17. [17]

      [17] SHAFIZADEH F, MCGINNIS G D, PHILPT C W. Thermal degradation of xylan and related model compounds[J]. Carbohyd Res, 1972, 25(1): 23-33.

    18. [18]

      [18] SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. J Anal Appl Pyrolysis, 2010, 87(2): 199-206.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    18. [18]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

Metrics
  • PDF Downloads(0)
  • Abstract views(563)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return