Citation: ZHENG Hua-yan, LIU Yuan-yuan, DONG Rui-min, MENG Fan-hui, LI Zhong. Effects of water on catalytic performance of Cu+/S2O82-/γ-Al2O3 for oxidative carbonylation of methanol to dimethyl carbonate[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 110-115. shu

Effects of water on catalytic performance of Cu+/S2O82-/γ-Al2O3 for oxidative carbonylation of methanol to dimethyl carbonate

  • Corresponding author: LI Zhong, 
  • Received Date: 27 April 2012
    Available Online: 5 June 2012

    Fund Project: 国家自然科学基金(20976113, 20936003) (20976113, 20936003) 山西省归国留学基金(20100038)。 (20100038)

  • Effects of H2O on the catalyst Cu+/S2O82-/γ-Al2O3 of DMC synthesis in slurry reactor were investigated under the conditions of 120℃ and 3.0 MPa. The results showed that the introduction of water into reaction system led to quick catalyst deactivation. The catalysts were characterized by the Elemental Analysis, XRD, DTG, Py-FT-IR and NH3-TPD. The results showed that active component Cu and CuCl, loading on the surface of S2O82-/γ-Al2O3 support, reacted with O2 and H2O, then formed Cu2(OH)3Cl which was essentially inactive for oxidative carbonylation of methanol to dimethyl carbonate. The catalyst deactivation rate speeded up with increasing water injection.
  • 加载中
    1. [1]

      [1] ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block [J]. Appl Catal A, 1997, 155(2): 133-166.

    2. [2]

      [2] PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels, 1997, 11(1): 2-29.

    3. [3]

      [3] 莫婉玲, 熊辉, 李光兴. 甲醇羰基化催化剂的合成、表征及溶解性研究[J]. 燃料化学学报,2001, 29(2): 165- 168. (MO Wan-ling,XIONG Hui,LI Guang-xing. Synthesis, characterization and solubility of methanol carbonylation catalyst Cu(OCH3)Cl[J]. Journal of Fuel Chemistry and Technology,2001, 29(2): 165-168.)

    4. [4]

      [4] BHATTACHARYA A.Fuel oxygenates: Organic carbonate synthesis[J].Prepr Pap Am Chem SOC, Div Fuel Chem, 1995, 40(1), 119-122.

    5. [5]

      [5] 王东升, 谭猗生, 韩怡卓, 椿范立. CO2对浆态床一步法合成二甲醚铜基催化剂稳定性的影响[J]. 催化学报, 2008, 29(1): 63-68. (WANG Dong-sheng, TAN Yi-sheng, HAN Yi-zhuo,CHUN Fan-li. Effect of CO2 on stability of Cu-based catalyst for dimethyl ether synthesis in slurry phase[J]. Chinese Journal of Catalysis, 2008, 29(1): 63-68.)

    6. [6]

      [6] ROMANO U, TESEL R, MAURIM M, REBORA P. Synthesis of dimethyl carbonate from methanol carbon monoxide, and oxygen catalyzed by copper compounds[J]. Ind Eng Chem Prod Res Dev, 1980, 19(3): 396-403.

    7. [7]

      [7] HAN M S, LEE B G, SUH I, KIM H S, AHN B S, HONG S I. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts[J]. J Mol Catal A, 2001, 170(1/2): 225-234.

    8. [8]

      [8] YANG P, CAO Y, DAI W-L, DENG J-F, FAN K-N. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts [J]. Appl Catal A, 2003, 243(2): 323-331.

    9. [9]

      [9] RICHTER M. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal, 2007, 245(1): 11-24.

    10. [10]

      [10] KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal, 1996, 161(2): 530-538.

    11. [11]

      [11] LI Z, XIE K, SLADE R C T. Studies of the interaction between CuCl and HY zeolite for preparing heterogeneous Cu+ catalyst[J]. Appl Catal A, 2001, 209(1/2): 107-115.

    12. [12]

      [12] 李忠, 孟凡会, 任军, 郑华艳, 谢克昌. CuCl/ SiO2-Al2O3催化剂的表面结构及甲醇氧化羰基化催化性能[J]. 催化学报,2008, 29(7): 643-648. (LI Zhong, MENG Fan-hui, REN Jun, XIE Ke-chang. Surface structure and catalytic performance of CuCl/SiO2-Al2O3 catalysts for methanol oxidative carbonylation[J]. Chinese Journal of Catalysis, 2008, 29(7): 643-648.)

    13. [13]

      [13] 郑华艳, 任军, 周媛, 牛燕燕, 李忠. Cu+/SiO2-ZrO2催化剂的制备及其催化甲醇氧化羰基化性能[J]. 燃料化学学报, 2011, 39(4): 282-286. (ZHENG Hua-yan, REN Jun, ZHOU Yuan, NIU Yan-yan, LI Zhong. Preparation of Cu+ /SiO2-ZrO2 catalysts for oxidative carbonylation of methanol to dimethyl carbonate[J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 282-286.)

    14. [14]

      [14] REN J, LIU S, LI Z, XING L, KE X. Oxidative carbonylation of methanol to dimethyl carbonate over CuCl/SiO2-TiO2 catalysts prepared by microwave heating: The effect of support composition[J]. Appl Catal A, 2009, 366(1): 93-101.

    15. [15]

      [15] 李忠, 黄海彬, 谢克昌. Cu(Ⅰ)/SO42-/ZnO和Cu(Ⅰ)/S2O82-/ZnO催化剂的制备与表征[J]. 高等学校化学学报, 2008, 29(8): 1609-1615. (LI Zhong, HUANG Hai-bin, XIE Ke-chang. Preparation and characterization of Cu(Ⅰ) /SO42-/ZnO and Cu(Ⅰ)/S2O82-/ZnO catalysts[J]. Chemical Research of Chinese Universities, 2008, 29(8): 1609-1615.)

    16. [16]

      [16] 李忠, 刘媛媛, 郑华艳, 黄海彬, 阴丽华. 固体酸负载Cu+催化剂表征及催化甲醇氧化羰基化[J]. 化工学报, 2010, 61(6): 1443-1449. (LI Zhong, LIU Yuan-yuan, ZHENG Hua-yan, HUANG Hai-bin, YIN Li-hua. Characterization and catalytic performance of Cu+/ solid acids catalysts in oxidative carbonylation of methanol[J]. Journal of Chemical Industry and Engineering(China), 2010, 61(6): 1443-1449.)

    17. [17]

      [17] ROMANO U, TESEI R, CIPRIANNI G. Method for the preparation of esters of carbonic acid: US, 4218391[P]. 1980-08-19.

    18. [18]

      [18] FLEET M E. The crystal stucture of paratacamite Cu2(OH)3Cl[J]. Acta Crystallogr B, 1975, 31(1):183-187.

    19. [19]

      [19] 辛勤, 梁长海. 固体催化剂的研究方法 第八章 红外光谱法(中)[J]. 石油化工, 2001, 30(2):157-167. (XIN Qin,LIANG Chang-hai. The research method of solid catalyst: Infrared spectroscopy[J]. Petrochemical Technology, 2001, 30(2): 157-167.)

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    3. [3]

      Haotian ZhangShengfa FengMufan CaoXiong Xiong LiuPengcheng YuanYaping WangMin GaoLong PanZhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096

    4. [4]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    5. [5]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    6. [6]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Xibao LiYiyang WanFang DengYingtang ZhouPinghua ChenFan DongJizhou Jiang . Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(10): 111418-. doi: 10.1016/j.cclet.2025.111418

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    19. [19]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return