Citation: WANG Zi-qing, LIN Jian-xin, WANG Rong, WEI Ke-mei. Ammonia synthesis over ruthenium supported on modified zirconia: Relationships between the catalyst structure and activity[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1472-1479. shu

Ammonia synthesis over ruthenium supported on modified zirconia: Relationships between the catalyst structure and activity

  • Corresponding author: LIN Jian-xin, 
  • Received Date: 17 May 2012
    Available Online: 14 July 2012

    Fund Project: 国家科技支撑计划(2007BAE08B02) (2007BAE08B02)中国石油科技创新基金(2010D-5006-0502)。 (2010D-5006-0502)

  • Modified zirconia (ZrO2) were synthesized by high temperature calcination of ZrO(OH)2 gels digested in alkalic solution; with the modified ZrO2 as support, ruthenium catalysts for ammonia synthesis were prepared with K2RuO4 solution. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction of hydrogen (H2-TPR), temperature programmed desorption of CO2 (CO2-TPD), nitrogen sorption, X-ray fluorescence spectroscopy (XRF), and CO chemisorption; the relationship between the catalyst structure and its catalytic activity was especially discussed. The results revealed that the digestion either in KOH or NH4OH solution can enhance the surface area of the ZrO2 support, while digestion in KOH is able to obtain the support with high basicity, which benefits to getting the ruthenium catalyst of high activity. The strong basicity of the modified ZrO2 support, rather than the high ruthenium dispersion, plays a more important role in enhancing the activity of the supported ruthenium catalyst. For ammonia synthesis under 425 ℃, 5 MPa and a space velocity of 10 000 h-1, NH3 outlet concentration over Ru/ZrO2-KOH is 5.96%, which is 11%, 143% and 103% higher than those of K-Ru/ZrO2-NH4OH, K-Ru/ZrO2-CP and Ru/ZrO2-NH4OH, respectively.
  • 加载中
    1. [1]

      [1] 王自庆, 张留明, 林建新,王榕, 魏可镁. 纳米材料负载钌催化剂的制备与应用[J]. 催化学报, 2012, 33(3): 377-388. (WANG Zi-qing, ZHANG Liu-ming, LIN Jian-xin, WANG Rong, WEI Ke-mei. Preoaration and application of nanometer materials supported ruthenium catalysts[J]. Chinese Journal of Catalysis, 2012, 33(3): 377-388.)

    2. [2]

      [2] 郑晓玲, 傅武俊, 俞裕斌, 张淑娟, 许交兴, 魏可镁. 助剂对Ru/C催化剂的表面性质及氨合成催化性能的影响[J]. 燃料化学学报, 2003, 31(1): 86-91. (ZHENG Xiao-ling, FU Wu-jun, YU Yu-bin, ZHANG Shu-juan, XU Jiao-xing, WEI Ke-mei. Effect of promoter on surface properties and catalytic activity of Ru/C catalyst for ammonia synthesis[J]. Journal of Fuel Chemistry and Technology, 2003, 31(1): 86-91.)

    3. [3]

      [3] 杨晓龙, 唐立平, 夏春谷, 熊绪茂, 慕新元, 胡斌. MgO/h-BN 复合载体对 Ba-Ru/MgO/h-BN 氨合成催化剂性能的影响[J]. 催化学报, 2012, 33(3): 447-453. (YANG Xiao-long, TANG Li-ping, XIA Chun-gu, XIONG Xu-mao, MU Xin-yuan, HU Bin. Effect of MgO/h-BN composite support on catalytic activity of Ba-Ru/MgO/h-BN for ammonia synthesis[J]. Chinese Journal of Catalysis, 2012, 33(3): 447-453.)

    4. [4]

      [4] SEETHARAMULU P, SIVA KUMAR V, PADMASRI A H, DAVID RAJU B, RAMA RAO K S. A highly active nano-Ru catalyst supported on novel Mg-Al hydrotalcite precursor for the synthesis of ammonia[J]. J Mol Catal A, 2007, 263(1/2): 253-258.

    5. [5]

      [5] SZMIGIEL D, RARG-PILECKA W, MIKIEWCZ E, GLISKI M, KIELAK M, KASZKUR Z, KOWALCZYK Z. Ammonia synthesis over ruthenium catalysts supported on high surface area MgO and MgO-Al2O3 systems[J]. Appl Catal A, 2004, 273(1/2):105-112.

    6. [6]

      [6] 张燕杰, 詹瑛瑛, 曹彦宁, 陈崇启, 林性贻,郑起. 以水热法合成的 ZrO2 负载 Au 催化剂上的低温水煤气变换反应[J].催化学报, 2012, 33(2): 230-236. (ZHANG Yan-jie, ZHAN Ying-ying, CAO Yan-ning, CHEN Chong-qi, LIN Xing-ying, ZHENG Qi. Low-temperature water-gas shift reaction over Au/ZrO2 catalysts using hydrothermally synthesized zirconia as supports[J]. Chinese Journal of Catalysis, 2012, 33(2): 230-236.)

    7. [7]

      [7] 刘水刚, 李军平, 赵宁, 魏伟, 孙予罕. 介孔 Ni/CaO2-ZrO2 纳米复合物催化甲烷和二氧化碳重整[J]. 催化学报, 2007, 28(11): 1019-1023. (LIU Shui-gang, LI Jun-ping, ZHAO Ning, WEI Wei, SUN Yu-han. CO2 reforming of CH4 over mesoporous Ni/CaO2-ZrO2nanocomposite[J]. Chinese Journal of Catalysis, 2007, 28(11): 1019-1023.)

    8. [8]

      [8] 王慧, 刘水刚, 张文郁, 赵宁, 魏伟, 孙予罕. 高稳定性CaO-ZrO2 固体碱催化剂的表征和催化性能[J].化学学报, 2006, 64(24): 2409-2413. (WANG Hui, LIU Shui-gang, ZHANG Wen-yu, WEI Wei, SUN Yu-han. Characterization and catalytic properties of highly stable CaO-ZrO2catalysts[J]. Acta Chimica Sinica, 2006, 64(24): 2409-2413. )

    9. [9]

      [9] WANG Y, HUANG W Y, WU Z, CHUN Y, ZHU J H. Superbase derived from zirconia-supported potassium nitrate[J]. Mater Lett, 2000, 64(4): 198-204.

    10. [10]

      [10] WANG Y, HUANG W Y, CHUN Y, XIA J R, ZHU J H. Dispersion of potassium nitrate and the resulting strong basicity on zirconia[J]. Chem Mater, 2001, 13(2): 670-677.

    11. [11]

      [11] YIN S-F, XU B-Q, WANG S-J, AU C-T. Nanosized Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition[J]. Appl Catal A, 2006, 301(2): 202-210.

    12. [12]

      [12] 尹双凤, 徐柏庆. 碱液回流老化制备高表面积二氧化锆[J]. 催化学报, 2002, 23(3): 214-218. (YIN Shuang-feng, XU Bo-qing. Preparation of high surface area zirconia by reflux digestion in basic solution[J]. Chinese Journal of Catalysis, 2002, 23(3): 214-218)

    13. [13]

      [13] 尹双凤, 李莉, 王恒秀, 徐柏庆. 碱液回流老化ZrO(OH)2制备纳米晶 ZrO2 的影响因素[J]. 化学学报, 2003, 61(6): 869-877. (YIN Shuang-feng, LI Li, WANG Heng-xiu, XU Bo-qing. Effects of ZrO(OH)2 reflux-digestion on the preparation of ZrO2 nanocrystals[J]. Acta Chimica Sinica, 2003, 61(6): 869-877)

    14. [14]

      [14] YIN S-F, XU B-Q. On the preparation of high-surface-area nano-zirconia by reflux-digestion of hydrous zirconia gel in basic solution[J]. ChemPhysChem, 2003, 4(6): 277-281.

    15. [15]

      [15] 王 榕, 谢 峰, 孔繁华, 张天釜, 张春光, 魏可镁, 俞秀金, 林建新, 倪 军, 林炳裕. 一种活性炭负载钌催化剂中钌的回收方法: 中国, 101638727. 2010-02-03. (WANG Rong, XIE Feng, KONG Fan-hua, ZHANG Tian-fu, ZHANG Chun-guang, WEI Ke-mei, YU Xiu-jin, LIN Jian-xin, NI Jun, LIN Bin-yu. A method for recovery of ruthenium from ruthenium catalyst supported activated carbon: CN, 101638727. 2010-02-03.)

    16. [16]

      [16] CHUAH G K, JAENICKE S, PONG B K. The preparation of high-surface-area zirconia: II Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia[J]. J Catal, 1998, 175(1): 80-92.

    17. [17]

      [17] GVNTER M M, RESSLER T, JENTOFT R E, BEMS B. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy [J]. J Catal, 2001, 203(1): 133-149.

    18. [18]

      [18] 王路存, 刘永梅, 曹勇, 吴贵升, 姚成漳, 戴维林, 贺鹤勇, 范康年. 草酸盐固相合成法制备高性能Cu/ZnO甲醇水蒸气重整催化剂[J]. 化学学报2007, 65(2): 173-176. (WANG Lu-cun, LIU Yong-mei, CAO Yong, WU Gui-sheng, YAO Cheng-zhang, DAI Wei-lin, HE He-yong, FAN Kang-nian. Highly effective methanol steam reforing Cu/ZnO catalyst prepared by s dry mechanochemical approach based on oxalate precursor synthesis[J]. Acta Chimic Sinica, 2007, 65(2): 173-176.)

    19. [19]

      [19] DUWEZ P, ODELL F, BROWN F H. Stabilization ZrO2 with CeO2 and MgO[J]. J Am Ceram Soc, 1952, 35(5): 107-113.

    20. [20]

      [20] 钱逸泰. 结晶化学导论[M]. 3 版. 合肥: 中国科学技术大学出版社, 2009: 289. (QIAN Yi-tai. Introduction of crystalline chemical[M]. 3 nd ed. Hefei: University of Science and Technology of China Press, 2009: 289.)

    21. [21]

      [21] 王英, 朱建华, 淳远, 吴振, 何永刚. 氧化锆负载含氧酸钾盐研制固体碱[J]. 石油学报(石油加工), 2000, 16(1): 1-6. (WANG Ying, ZHU Jian-hua, CHUN Yuan, WU Gang, HE Yong-liang. Solid superbase derived from potassium salts of oxyacid on zirconia[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2000, 16(1): 1-6.)

    22. [22]

      [22] SUN G, XU A, HE Y, YANG M, DU H, SUN C. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N, N-dimethyl formamide[J]. J Hazard Mater, 2008, 156(1/3): 335-341.

    23. [23]

      [23] IWAMOTO J, ITOH M, KAJITA Y, SAITO M, MACHIDA K. Ammonia synthesis on magnesia supported ruthenium catalysts with mesoporous structure[J]. Catal Commun, 2007, 8(6): 941-944.

    24. [24]

      [24] SEETHARAMULU P, HARI PRASAD REDDY K, PADMASRI A H, RAMA RAO K S, DAVID RAJU B. Role of promoters on highly active nano-Ru catalyst supported on Mg-Al hydrotalcite precursor for the synthesis of ammonia[J]. Catal Today, 2009, 141(1/2): 94-98.

    25. [25]

      [25] YOU Z, INAZU K, AIKA K-I, BABA T. Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis[J]. J Catal, 2007, 251(2): 321-331.

    26. [26]

      [26] 杨晓龙, 夏春谷, 唐立平, 熊绪茂, 慕新元,胡斌. 氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响[J]. 无机化学学报, 2011, 27(8): 1541-1549. (YANG Xiao-long, XIA Chun-gu, TANG Li-ping, XIONG Xu-mao, MU Xin-yuan, HU Bin.MgO support and BaO promoter on structure and catalytic activity of ruthenium catalysts for ammonia synthesis[J]. Chinese Journal of Inorgnanic Chemistry, 2011, 27(8): 1541-1549.)

    27. [27]

      [27] ISHIKAWA H, KONDO J N, DOMEN K. Hydrogen adsorption and spillover on Ru/ZrO2[M]. Stud Surf Sci Catal, 1997, 112: 73-80.

    28. [28]

      [28] ISHIKAWA H, KONDO J N, DOMEN K. Hydrogen adsorption on Ru/ZrO2 studied by FT-IR[J]. J Phys Chem B, 1999, 103(16): 3229-3234.

    29. [29]

      [29] YIN S-F, ZHANG Q-H, XU B-Q, ZHU W-X, NG C-F, AU C-T. Investigation on the catalysis of COx-free hydrogen generation from ammonia[J]. J Catal, 2004, 224(2): 384-396.

    30. [30]

      [30] 徐春凤, 欧阳亮, 张佳, 周斌, 李瑛, 刘化章. 氮化硼载体对 Ru-Ba/BN 氨合成催化剂性能的影响[J].催化学报, 2010, 31(6): 677-682. (XU Chun-feng, OU Yang-liang, ZHANG Jia, ZHOU Bin, LI Ying, LIU Hua-zhang. Effect of boron nitride support on catalytic activity of Ru-Ba/BN for ammonia synthesis[J]. Chinese Journal of Catalysis, 2010, 31(6): 677-682.)

    31. [31]

      [31] LUO X, WANG R, NI J, LIN J X, LIN B Y, XU X M, WEI K M. Effect of La2O3 on Ru/CeO2-La2O3 catalyst for ammonia synthesis[J]. Catal Lett, 2009, 133(3/4): 382-387.

    32. [32]

      [32] 杨晓龙, 唐立平, 熊绪茂, 慕新元,胡斌. 焙烧气氛对Ba-Ru/MgO催化剂氨合成性能的影响[J]. 工业催化, 2012, 20(3): 8-14. (YANG Xiao-long, TANG Li-ping, Xiong Xu-mao, MU Xin-yuan, HU Bin. Effect of calcination atmosphere on the performance of Ba-Ru/MgO catalysts for ammonia synthesis[J]. Industral Catalysis, 2012, 20(3): 8-14.)

    33. [33]

      [33] 杨晓龙, 唐立平, 夏春谷, 熊绪茂, 慕新元, 胡斌. 不同MgO担体对Ba-Ru/MgO氨合成催化剂物化性质和反应性能的影响[J]. 分子催化, 2012, 26(1): 1-9. (YANG Xiao-long, TANG Li-ping, XIA Chun-gu, Xiong Xu-mao, MU Xin-yuan, HU Bin. Effect of different suppotrs on physical and chemical properities and catalytic activity over Ba-Ru/MgO ammonia synthesis catalysts[J]. Journal of Molecular Catalysis(China), 2012, 26(1): 1-9.)

    34. [34]

      [34] LIANG C, WEI Z, XIN Q, LI C. Ammonia synthesis over Ru/C catalysts with different carbon promoted by barium and potassium compounds [J]. Appl Catal A, 2001, 208(1/2): 193-201.

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(0)
  • Abstract views(530)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return