Citation: BAI Shao-fen, LIU Shun, LIU Xin-mei. Deactivation of Cu/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1341-1345. shu

Deactivation of Cu/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation

  • Corresponding author: LIU Xin-mei, 
  • Received Date: 5 April 2012
    Available Online: 4 June 2012

  • The physical structure, microstructure and carbonaceous deposition of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation were characterized by nitrogen sorption, X-ray diffraction (XRD), transmission electron microscope (TEM), and thermogravimetry and differential scanning calorimetry (TG-DSC) techniques. The results showed that the sintering of active components is the major factor for catalyst deactivation and the carbonaceous deposition is in the next place; the surface area has little effect on catalyst activation.
  • 加载中
    1. [1]

      [1] RAHIMPOUR M R. A two-stage catalyst bed concept for conversion of carbon dioxide into methanol[J]. Fuel Process Technol, 2008, 89(5): 556-566.

    2. [2]

      [2] ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007, 249(2): 185-194.

    3. [3]

      [3] RAUDASKOSKI R, NIEMELAB M V, KEISKI R L. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2[J]. Top Catal, 2007, 45(1/4): 57-60.

    4. [4]

      [4] LIU X-M, LU G Q, YAN Z-F. Nanocrystalline zirconia as catalyst support in methanol synthesis[J]. Appl Catal A, 2005, 279(1/2): 241-245.

    5. [5]

      [5] KURTZ M, WILMER H, GENGE T, HINRICHSEN O, MUHLER M. Deactivation of supported copper catalysts for methanol synthesis[J]. Catal Lett, 2003, 86(1/3): 77-81.

    6. [6]

      [6] TWIGG M V, SPENCER M S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Appl Catal A, 2001, 212(1/2): 161-174.

    7. [7]

      [7] SUN J T, METCALFE I S, SAHILBZADA M. Deactivation of Cu/ZnO/Al2O3 Methanol synthesis catalyst by sintering[J]. Ind Eng Chem Res, 1999, 38(10): 3868-3872.

    8. [8]

      [8] LUAN Y, XU H, YU C, LI W, HOU S. Effects and control of steam in the systems of methanol and DME synthesis from syngas over Cu-based catalysts[J]. Catal Lett, 2008, 125(3/4): 271-276.

    9. [9]

      [9] 殷永泉, 肖天存, 苏继新, 王海涛, 鹿玉理. 铜基甲醇合成催化剂的失活研究[J]. 分子催化, 2000, 14(5): 373-378. (YIN Yong-quan, XIAO Tian-cun, SU Ji-xin, WANG Hai-tao, LU Yu-li. Studies on deactivation of Cu-based catalyst for methanol synthesis[J]. Journal of Molecular Catalysis(China), 2000, 14(5): 373-378.)

    10. [10]

      [10] 殷永泉, 肖天存, 苏继新, 王海涛, 鹿玉理, 李晋鲁, 刘崇微, 朱起明, 李树本. 工业甲醇合成催化剂的失活与再生研究[J]. 天然气化工, 2000, 25(2): 34-36. (YIN Yong-quan, XIAO Tian-cun, SUN Ji-xin, WANG Hai-tao, LU Yu-li, LI Jin-lu, LIU Chong-ming, LI Shu-ben. Studies on deactivation and regeneration of industrial methanol synthesis catalyst[J]. Natural Gas Chemical Industry, 2000, 25(2): 34-36.)

    11. [11]

      [11] ZHAI X, SHAMOTO J, XIE H, TAN Y, HAN Y, TSUBAKI N. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase[J]. Fuel, 2008, 87(4/5): 430-434.

    12. [12]

      [12] MA Y, GE Q, LI W, XU H. Study on the sulfur tolerance of catalysts for syngas to methanol[J]. Catal Commun, 2008, 10(1): 6-10.

    13. [13]

      [13] WU J, SAITO M, TAKEUCHI M, WATANABE T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Appl Catal A, 2001, 218(1/2): 235-240.

    14. [14]

      [14] 何刚, 高勤卫. MK101催化剂提前失活的研究[J]. 石油与天然气化工, 2009, 38(2): 105-108. (HE Gang, GAO Qin-wei. Deactivation study on MK101 catalyst[J]. Chemical Engineering of Oil & Gas, 2009, 38(2): 105-108.)

    15. [15]

      [15] 庄会栋, 白绍芬, 刘欣梅, 阎子峰. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报, 2010, 38(4): 462-467. (ZHUANG Hui-dong, BAI Shao-fen, LIU Xin-mei, YAN Zi-feng. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 462-467.)

    16. [16]

      [16] 翟旭芳, 社本纯, 解红娟, 谭猗生, 韩怡卓, 椿范立. 浆态相甲醇合成催化剂的失活机理[J]. 催化学报, 2007, 28(1): 51-56. (ZHAI Xu-fang, SHE Ben-chun, XIE Hong-juan, TAN Qi-sheng, HAN Yi-zhuo, TSUBAKI N. Deactivation mechanism of Cu-based catalyst for methanol synthesis in slurry phase[J]. Chinese Journal of Catalysis, 2007, 28(1): 51-56.)

    17. [17]

      [17] 左宜赞, 张强, 韩明汉, 王金福, 王铁锋, 王德峥, 金涌. 铜基甲醇催化剂的高温烧结[J]. 催化学报, 2009, 30(7): 624-630. (ZUO Yi-zan, ZHANG Qiang, HAN Ming-han, WANG Jin-fu, WANG Tie-feng, WANG De-zheng, JIN Yong. The sintering of a Cu-based methanol synthesis catalyst[J]. Chinese Journal of Catalysis, 2009, 30(7): 624-630.)

    18. [18]

      [18] 丰中田, 裴学国, 唐海涛. 甲醇合成催化剂失活原因分析及延长使用寿命的方法[J]. 煤化工, 2007, (4): 41-43. (FENG Zhong-tian, PEI Xue-guo, TANG Hai-tao. Causes of deactivation of catalyst for methanol synthesis and method to prolong its lifetime[J]. Coal Chemical Industry, 2007, (4): 41-43.)

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    19. [19]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return