Citation:
BAI Shao-fen, LIU Shun, LIU Xin-mei. Deactivation of Cu/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(11): 1341-1345.
-
The physical structure, microstructure and carbonaceous deposition of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation were characterized by nitrogen sorption, X-ray diffraction (XRD), transmission electron microscope (TEM), and thermogravimetry and differential scanning calorimetry (TG-DSC) techniques. The results showed that the sintering of active components is the major factor for catalyst deactivation and the carbonaceous deposition is in the next place; the surface area has little effect on catalyst activation.
-
Keywords:
- Cu/ZrO2 catalyst,
- methanol synthesis,
- deactivation factors
-
-
-
[1]
[1] RAHIMPOUR M R. A two-stage catalyst bed concept for conversion of carbon dioxide into methanol[J]. Fuel Process Technol, 2008, 89(5): 556-566.
-
[2]
[2] ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007, 249(2): 185-194.
-
[3]
[3] RAUDASKOSKI R, NIEMELAB M V, KEISKI R L. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2[J]. Top Catal, 2007, 45(1/4): 57-60.
-
[4]
[4] LIU X-M, LU G Q, YAN Z-F. Nanocrystalline zirconia as catalyst support in methanol synthesis[J]. Appl Catal A, 2005, 279(1/2): 241-245.
-
[5]
[5] KURTZ M, WILMER H, GENGE T, HINRICHSEN O, MUHLER M. Deactivation of supported copper catalysts for methanol synthesis[J]. Catal Lett, 2003, 86(1/3): 77-81.
-
[6]
[6] TWIGG M V, SPENCER M S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Appl Catal A, 2001, 212(1/2): 161-174.
-
[7]
[7] SUN J T, METCALFE I S, SAHILBZADA M. Deactivation of Cu/ZnO/Al2O3 Methanol synthesis catalyst by sintering[J]. Ind Eng Chem Res, 1999, 38(10): 3868-3872.
-
[8]
[8] LUAN Y, XU H, YU C, LI W, HOU S. Effects and control of steam in the systems of methanol and DME synthesis from syngas over Cu-based catalysts[J]. Catal Lett, 2008, 125(3/4): 271-276.
-
[9]
[9] 殷永泉, 肖天存, 苏继新, 王海涛, 鹿玉理. 铜基甲醇合成催化剂的失活研究[J]. 分子催化, 2000, 14(5): 373-378. (YIN Yong-quan, XIAO Tian-cun, SU Ji-xin, WANG Hai-tao, LU Yu-li. Studies on deactivation of Cu-based catalyst for methanol synthesis[J]. Journal of Molecular Catalysis(China), 2000, 14(5): 373-378.)
-
[10]
[10] 殷永泉, 肖天存, 苏继新, 王海涛, 鹿玉理, 李晋鲁, 刘崇微, 朱起明, 李树本. 工业甲醇合成催化剂的失活与再生研究[J]. 天然气化工, 2000, 25(2): 34-36. (YIN Yong-quan, XIAO Tian-cun, SUN Ji-xin, WANG Hai-tao, LU Yu-li, LI Jin-lu, LIU Chong-ming, LI Shu-ben. Studies on deactivation and regeneration of industrial methanol synthesis catalyst[J]. Natural Gas Chemical Industry, 2000, 25(2): 34-36.)
-
[11]
[11] ZHAI X, SHAMOTO J, XIE H, TAN Y, HAN Y, TSUBAKI N. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase[J]. Fuel, 2008, 87(4/5): 430-434.
-
[12]
[12] MA Y, GE Q, LI W, XU H. Study on the sulfur tolerance of catalysts for syngas to methanol[J]. Catal Commun, 2008, 10(1): 6-10.
-
[13]
[13] WU J, SAITO M, TAKEUCHI M, WATANABE T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Appl Catal A, 2001, 218(1/2): 235-240.
-
[14]
[14] 何刚, 高勤卫. MK101催化剂提前失活的研究[J]. 石油与天然气化工, 2009, 38(2): 105-108. (HE Gang, GAO Qin-wei. Deactivation study on MK101 catalyst[J]. Chemical Engineering of Oil & Gas, 2009, 38(2): 105-108.)
-
[15]
[15] 庄会栋, 白绍芬, 刘欣梅, 阎子峰. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报, 2010, 38(4): 462-467. (ZHUANG Hui-dong, BAI Shao-fen, LIU Xin-mei, YAN Zi-feng. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 462-467.)
-
[16]
[16] 翟旭芳, 社本纯, 解红娟, 谭猗生, 韩怡卓, 椿范立. 浆态相甲醇合成催化剂的失活机理[J]. 催化学报, 2007, 28(1): 51-56. (ZHAI Xu-fang, SHE Ben-chun, XIE Hong-juan, TAN Qi-sheng, HAN Yi-zhuo, TSUBAKI N. Deactivation mechanism of Cu-based catalyst for methanol synthesis in slurry phase[J]. Chinese Journal of Catalysis, 2007, 28(1): 51-56.)
-
[17]
[17] 左宜赞, 张强, 韩明汉, 王金福, 王铁锋, 王德峥, 金涌. 铜基甲醇催化剂的高温烧结[J]. 催化学报, 2009, 30(7): 624-630. (ZUO Yi-zan, ZHANG Qiang, HAN Ming-han, WANG Jin-fu, WANG Tie-feng, WANG De-zheng, JIN Yong. The sintering of a Cu-based methanol synthesis catalyst[J]. Chinese Journal of Catalysis, 2009, 30(7): 624-630.)
-
[18]
[18] 丰中田, 裴学国, 唐海涛. 甲醇合成催化剂失活原因分析及延长使用寿命的方法[J]. 煤化工, 2007, (4): 41-43. (FENG Zhong-tian, PEI Xue-guo, TANG Hai-tao. Causes of deactivation of catalyst for methanol synthesis and method to prolong its lifetime[J]. Coal Chemical Industry, 2007, (4): 41-43.)
-
[1]
-
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[3]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[4]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[5]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[6]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[7]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[8]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[9]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[10]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[11]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[12]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[15]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[16]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[17]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[18]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[19]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[20]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(389)
- HTML views(12)