Citation: JIAO Feng-bin, ZHANG Ya-ping, SHEN Kai, SUN Ke-qin, XU Hai-tao, ZHOU Chang-cheng. γ-Al2O3 modification on V2O5-WO3/TiO2 catalyst for selective catalytic reduction(SCR) of NO[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1258-1263. shu

γ-Al2O3 modification on V2O5-WO3/TiO2 catalyst for selective catalytic reduction(SCR) of NO

  • Corresponding author: ZHANG Ya-ping, 
  • Received Date: 30 December 2011
    Available Online: 8 March 2012

    Fund Project: 国家高技术研究发展计划(863计划, 2007AA061802) (863计划, 2007AA061802) 江苏省自然科学基金(BK2012347)。 (BK2012347)

  • A series of titania-alumina mixed oxide with different amount of γ-Al2O3were prepared by sol-gel methods, which were loaded by V2O5 and WO3 to obtain several SCR catalysts. Surface properties of those samples were studied by various characterizations techniques, like XRD, BET, H2-TPR and HRTEM. The catalytic performance for the selective catalytic reduction of NO with NH3(NH3-SCR)and the effect of SO2 in the simulated smog on the catalytic activity were investigated as well. It is found that the synergy between γ-Al2O3 and TiO2 can improve effectively the catalytic performance of V2O5-WO3/TiO2-γ-Al2O3 catalysts effectively and broaden the temperature window of SCR activity as well as strengthen the resistance to SO2 poisoning. In particular, the V2O5-WO3/TiO2-15% γ-Al2O3 sample exhibited 80% NO conversion in the wide temperature range of 310~460 ℃.All the characterization results show that γ-Al2O3 is in a well-dispersed state on the surface of TiO2; the composite support has a large specific surface area and the binary oxide possesses a comparatively strong redox property.
  • 加载中
    1. [1]

      [1] 罗胜成, 桂琳琳, 唐有祺. TiO2-AI2O3复合载体的比较研究[J]. 物理化学学报, 1996, 12(1): 7-11. (LUO Sheng-cheng, GUI Lin-lin, TANG You-qi. The comparative study on TiO2-AI2O3 composites[J]. Acta Physico-Chimica Sinica, 1996, 12(1): 7-11.)

    2. [2]

      [2] 彭会左, 杨运泉, 王威燕, 何兵, 钦柏豪. 超声波辅助共沉淀法制备大比表面积TiO2-Al2O3复合载体[J]. 石油化工, 2011, 40(7): 726-731. (PENG Hui-zuo, YANG Yun-quan, WANG Wei-yan, HE Bin, QIN Bai-hao. Preparation of TiO2-Al2O3composite support with high specific surface area by ultrasound-assisted co-precipitation method[J]. Petrochemical Technology, 2011, 40(7): 726-731.)

    3. [3]

      [3] 李惠娟, 蒋晓原, 郑小明. 钛铝载体的合成及负载CuO对NO催化性能研究[J]. 物理化学学报, 2006, 22(5): 584-589. (LI Hui-juan, JIAMG Xiao-yuan, ZHENG Xiao-ming. Synthesis of TiO2/γ-Al2O3and effect of CuO loading on NO reduction[J]. Acta Physico-Chimica Sinica, 2006, 22(5): 584-589.)

    4. [4]

      [4] 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001. (ZHANG Li-de, MOU Ji-mei. Nanomaterials and nanostructures[M]. Beijing: Science Press, 2001.)

    5. [5]

      [5] 闫志勇, 胡建飞, 徐鸿. SCR烟气脱硝催化剂V2O5-WO3/TiO2性能研究[J]. 中国计量学院学报, 2011, 22(1): 68-72. (YAN Zhi-yong, HU Jian-fei, XU Hong. Preparation of V2O5-WO3/TiO2catalyst and properties of reduction NOx[J]. Journal of China University of Metrology, 2011, 22(1): 68-72.)

    6. [6]

      [6] 赵彦光, 胡静, 华伦, 陈镇, 帅石金, 王建昕. 钒基SCR催化剂动态反应及氨存储特性的试验研究[J]. 内燃机工程, 2011, 32(4): 1-6. (ZHAO Yan-guang, HU Jing, HUA Lun, CHEN Zhen, SHUAI Shi-jin, WANG Jian-xin. Experimental study of dynamic reaction and ammonia storage characteristics of vanadium-based SCR catalyst[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(4): 1-6.)

    7. [7]

      [7] 张烨, 徐晓亮, 缪明烽. SCR脱硝催化剂失活机理研究进展[J]. 能源环境保护, 2011, 25(4): 14-18. (ZHANG Ye, XU Xiao-liang, MIU Ming-feng. Advance in deactivation mechanism for SCR denitration catalyst[J]. Energy Environmental Protection, 2011, 25(4): 14-18.)

    8. [8]

      [8] HARLE V, VRINAT M, SCHRAFF J P, DURAND B, DELOUME J P. Catalysis assisted characterizations of nanosized TiO2-Al2O3mixtures obtained in molten alkali metal nitrates[J]. Appl Catal A, 2000, 196(2): 261-269.

    9. [9]

      [9] 王建强, 辛柏福, 于海涛, 谢玉涛, 赵冰, 付宏刚. 二氧化钛系列光催化剂的拉曼光谱[J]. 高等学校化学学报, 2003, 24(7): 1237-1240. (WANG Jian-qiang, XIN Bai-fu, YU Hai-tao, XIE Yu-tao, ZHAO Bing, FU Hong-gang. Raman spectroscopy of titanium dioxide photocatalys[J]. Chemical Research in Chinese Universities, 2003, 24(7): 1237-1240.)

    10. [10]

      [10] 张文郁, 解秀清, 郝国杨, 胡文宾, 唐昭峥. 焙烧温度对TiO2-Al2O3催化剂制备的影响[J].燃料化学学报, 2001, 29(增): 77-79. (ZHANG Wen-yu, XIE Xiu-qing, HAO Guo-yang, HU Wen-bin, TANG Zhao-zheng. Effect of calcination temperature on preparation of TiO2-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2001, 29(Suppl): s77-s79.)

    11. [11]

      [11] 任丙南, 杨巧文, 吕立娜. V2O5负载量对V2O5/TiO2 催化剂SCR 法脱硝的影响[J]. 广东化工, 2011, 38(1): 133-135. (REN Bing-nan, YANG Qiao-wen, LV Li-na. Effect of V2O5loading to De-NOX of V2O5/TiO2catalysts[J]. Guangdong Chemical Industry, 2011, 38(1): 133-135.)

    12. [12]

      [12] 韦以, 刘新香. Al2O3-TiO2复合载体的制备与表征[J]. 石油化工, 2006, 35(2): 173-177. (WEI Yi, LIU Xin-xiang. Preparation and characterization of Al2O3-TiO2 complex support[J]. Petrochemical Technology. 2006, 35(2): 173-177.)

    13. [13]

      [13] 郑柏存, 汪仁. TiO2, Al2O3基燃烧催化剂的固态化学研究[J]. 华东化工学院学报, 1992, 13(5): 683-686. (ZHENG Bai-cun, WANG Ren. TiO2 and Al2O3-based solid-state chemistry of combustion catalyst[J]. Journal of East China Institute of Chemical Technology, 1992, 13(5): 683-686.)

    14. [14]

      [14] 张亚平, 汪小蕾, 孙克勤, 沈凯, 徐海涛, 周长城. WO3对MnOx/TiO2低温脱硝SCR催化剂的改性研究[J]. 燃料化学学报, 2011, 39(10): 782-786. (ZHANG Ya-ping, WANG Xiao-lei, SUN Ke-qin, SHEN Kai, XU Hai-tao, ZHOU Chang-cheng. WO3 modification on MnOx/TiO2 low-temperature De-NOx SCR catalyst[J]. Journal of Fuel Chemistry and Technology,2011, 39(10): 782-786.)

    15. [15]

      [15] 邹鹏, 熊志波, 韩圭华, 路春美. 钒钛SCR脱硝催化剂低温研究进展[J]. 电力科技与环保, 2011, 27(5): 5-9. (ZOU Peng, XIONG Zhi-bo, HAN Gui-hua, LU Chun-mei. Research progress of V2O5/TiO2 SCR catalysts of NOx in low temperature[J]. Electric Power Environmental Protection, 2011, 27(5): 5-9.

    16. [16]

      [16] QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Appl Catal B, 2004, 51(2): 93-106.

    17. [17]

      [17] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 83-88. (XIN Qin, LUO Meng-fei. Modern catalytic methods[M]. Beijing: Science Press, 2009: 83-88.)

    18. [18]

      [18] 胡见波, 李伟, 张明惠. 负载型纳米TiO2复合载体的制备及其酸性研究[J]. 燃料化学学报, 2002, 30(5): 438-441. (HU Jian-bo, LI Wei, ZHANG Ming-hui. Preparation and acidic features of supported nanometer titanium oxide[J]. Journal of Fuel Chemistry and Technology, 2002, 30(5): 438-441.)

    19. [19]

      [19] JIANG B Q, LIU Y. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3): 1249—1254.

    20. [20]

      [20] 李伟, 林涛, 张秋林. 整体式MnOX-CeO2/ZrO2-TiO2催化剂用于NH3低温选择性催化还原NO[J]. 催化学报, 2009, 30(2): 104-110. (LI Wei, LIN Tao, ZHANG Qiu-lin. Low temperature selective catalytic reduction of NO with NH3 over MnO-CeO2/ZrO2-TiO2 monolith catalyst [J]. Chinese Journal of Catalysis, 2009, 30(2): 104-110.)

    21. [21]

      [21] 陈晓林, 仲兆平. 以TiO2为载体的烟气脱硝催化剂研究进展[J]. 江苏电机工程, 2010, 29(2): 54-56. (CHEN Xiao-lin, ZHONG Zhao-ping. Research progress in the De-NOx catalyst supported on TiO2[J]. Jiangsu Electrical Engineering, 2010, 29(2): 54-56.)

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(403)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return