Citation: XU Hong-xing, PU Chun-sheng, WU Fei-peng. Mechanism of underground heavy oil catalytic aquathermolysis[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1206-1211. shu

Mechanism of underground heavy oil catalytic aquathermolysis

  • Corresponding author: XU Hong-xing, 
  • Received Date: 14 January 2012
    Available Online: 19 March 2012

    Fund Project: 国家自然科学基金(51104173, 51274229) (51104173, 51274229) 国家科技重大专项 (2011ZX05009-004) (2011ZX05009-004) 山东省自然科学基金 (ZR2010EM014)。 (ZR2010EM014)

  • Field tests of underground heavy oil catalytic aquathermolysis were carried out in Shengli oilfield, the average period oil increment for 5 test wells reached to 653 t, and the viscosity of heavy oil was reduced by 79.8%, and still decreased by more than 62% after 14 weeks. The chemical and physical properties of heavy oil before and after the reaction were investigated using DV-III Ultra-Brookfield rheometers, Elementar Vario EL III elemental analyzer, Knauer K-700 Vapor permeability tester, Agilent 6890N gas chromatograph and EQUINOX 55 Fourier transform infrared spectrometer,etc. The results indicate that the heavy oil viscosity and average molecular weight are decreased and the content of resin and asphaltene is reduced after the reaction. The H/C ratio of heavy oil and the content of saturate and aromatic are increased. The amount of heteroatom in heavy oil is also decreased after the treatment. The reaction of underground heavy oil catalytic aquathermolysis is mainly affected by the catalyst system, high temperature water and reservoir mineral, in which the catalyst is the key control factor, and the hydrogen donating accelerator and dispersing agent can improve the cracking. In addition, the acid-base properties of water under high temperature and the reservoir mineral can promote the reaction. During the aquathermolysis, many reactions including the removal of alkyl side chain, the molecular chain isomerization, the hydrogenation, the ring opening, the ring closing and the desulfuration are involved, which can lead to the reduction of viscosity and improvement of heavy oil quality. The results suggest that the underground heavy oil catalytic aquathermolysis is feasible in field use.
  • 加载中
    1. [1]

      [1] 许洪星, 蒲春生. 超声波辅助稠油层内催化水热裂解实验研究 [J]. 燃料化学学报, 2011, 39(8): 606-610. (XU Hong-xing, PU Chun-sheng. Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic [J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 606-610.

    2. [2]

      [2] HYNE J B, GREIDANUS J W, TYRER J D. Aquathermolysis of heavy oil [C]//Proceedings of the 2nd international conference on heavy crude and tar sands. Caracas, Venezuela: 1982: 25-30.

    3. [3]

      [3] RICHARD P D, WILLIAM C M, MURRAY R G. Thermal cracking of Athabasca bitumen: Influence of steam on reaction chemistry [J]. Energy Fuels, 2000, 14(2): 671-676.

    4. [4]

      [4] RIVAS O R, CAMPOS R E, BORGES L G. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes [J]. SPE 18076, 1988.

    5. [5]

      [5] CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 3 Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts [J]. Fuel, 1984, 63(7): 1649-1655.

    6. [6]

      [6] CLARK P D, CLARKE R A, HYNE J B. Studies on the effect of metal species on oil sands undergoing steam treatments [J]. AOSTRA J Res, 1990, 6(1): 53-64.

    7. [7]

      [7] BRUCE P P, ALFRED G C. Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds: UP, 6139723. 2000-10-31.

    8. [8]

      [8] 刘永建, 钟立国, 范洪富, 刘喜林. 稠油的水热裂解反应及其降黏机理 [J]. 大庆石油学院学报, 2002, 26(3): 95-99. (LIU Yong-jian, ZHONG Li-guo, FAN Hong-fu, LIU Xi-lin. Study on the aquathermolysis and viscosity reduced mechanism of heavy oil [J]. Journal of Daqing Petroleum Institute, 2002, 26(3): 95-99.)

    9. [9]

      [9] CHEN Y, WANG Y, WU C. Laboratory experiments and field tests of an amphiphilic metallic chelate for catalytic aquathermolysis of heavy oil [J]. Energy Fuels, 2008, 22(3): 1501-1508.

    10. [10]

      [10] CHEN Y, WANG Y, LU J, WU C. The viscosity reduction of nano-keggin-K3PMo12O40 in catalytic aquathermolysis of heavy oil [J]. Fuel, 2009, 88(8): 1426-1434.

    11. [11]

      [11] 樊泽霞, 赵福麟, 王杰祥, 巩永刚. 超稠油供氢水热裂解改质降黏研究 [J]. 燃料化学学报, 2006, 34(3): 315-318. (FAN Ze-xia, ZHAO Fu-lin, WANG Jie-xiang, GONG Yong-gang. Upgrading and viscosity reduction of super heavy oil by aquathermolysis with hydrogen donor [J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 315-318.)

    12. [12]

      [12] 宋向华, 蒲春生, 刘洋. 井下乳化/水热催化裂解复合降黏开采稠油技术研究 [J]. 油田化学, 2006, 23(2): 153-157. (SONG Xiang-hua, PU Chun-sheng, LIU Yang. A study on heavy oil recovery by in-situ emulsification/catalytic aquathermolysis [J]. Oilfield Chemistry, 2006, 23(2): 153-157.)

    13. [13]

      [13] 范洪富, 刘永建, 赵晓非, 钟立国. 国内首例井下水热裂解催化降黏开采稠油现场试验 [J]. 石油钻采工艺, 2001, 23(3): 42-45. (FAN Hong-fu, LIU Yong-jian, ZHAO Xiao-fei, ZHONG Li-guo. First field experimental of recovery heavy oil using down-hole catalytic method in China [J]. Oil Drilling & Production Technology, 2001, 23(3): 42-45.)

    14. [14]

      [14] 吴川, 雷光伦, 姚传进, 盖平原. 双亲催化剂作用超稠油水热裂解降黏机理研究 [J]. 燃料化学学报, 2010, 38(6): 684-690. (WU Chuan, LEI Guang-Lun, YAO Chuan-jin, GAI Ping-yuan. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysiswith an amphiphilic catalyst [J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 684-690.)

    15. [15]

      [15] CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 1 High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes [J]. Fuel, 1983, 62(5): 959-962.

    16. [16]

      [16] Van OLPHEN H. An introduction to clay colloid chemistry for clay technologist, geologist and soil scientist [M]. New York: A Wiley-Interscience Publication, 1977: 57-64.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(0)
  • Abstract views(407)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return