Citation:
WANG Qi, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, GUO Kai-li. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(10): 1200-1205.
-
Visbreaking and hydrogen donor visbreaking of Venezuelan atmospheric residue were evaluated in an autoclave. The results show that hydrogen donor employ in visbreaking process is able to inhibit gas production, coke formation and asphaltene formation of residua in the thermal conversion process. To be specific, gas and coke yield in hydrogen donor visbreaking are less than that in visbreaking by 0.5%~1.2% and 0.02%~0.98% respectively, and asphaltene content of its residual oils is less than that of visbreaking by 0.6%~1.3%. With the reaction time increasing from 5 to 20 min at 425℃, the total and net viscosity reduction rate of hydrogen donor visbreaking process varies in 46.1%~54.8% and 10.2%~33.0%, respectively. The optimum reaction condition for hydrogen donor visbreaking process is obtained at 425℃ for 5 min. Under this condition, the properties of hydrogen donor visbroken oil are as follows: the spot test rates NO. 1 according to reference spot description in ASTM D4740, the kinematic viscosity measured at 50℃ is 185.5 mm2/s and the net viscosity reduction rate is 26.4%, which meet the basic requirements of transportation.
-
-
-
[1]
[1] BESSON C, AGENCY I E. Resources to reserves: Oil & gas technologies for the energy markets of the future[M]. France: International Energy Agency, 2005.
-
[2]
[2] YAGHI B M, AL-BEMANI A. Heavy crude oil viscosity reduction for pipeline transportation[J]. Energy Sources, 2002, 24(2): 93-102.
-
[3]
[3] SANIERE A, HENAUT I, ARGILLIER J F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge [J]. Oil Gas Sci Technol-Rev IFP, 2004, 59(5): 455-466.
-
[4]
[4] LANGEVIN D, POTEAU S, HENAUT I, ARGILLIER J F. Crude oil emulsion properties and their application to heavy oil transportation [J]. Oil Gas Sci Technol-Rev IFP, 2004, 59(5): 511-521.
-
[5]
[5] Van AKEN G A, ZOET F D. Coalescence in highly concentrated coarse emulsions[J]. Langmuir, 2000, 16(18): 7131-7138.
-
[6]
[6] SAVAYA Z F, AL-SOUFI H H, AL-AZAWI I. Stability of fuel oils produced by visbreaking of vacuum residue[J]. Fuel, 1989, 68(8): 1064-1066.
-
[7]
[7] ROGEL E. Theoretical approach to the stability of visbroken residues[J]. Energy Fuels, 1998, 12(5): 875-880.
-
[8]
[8] CARRILL J A, CORREDOR L M, VALERO M L. Visbreaking of the heavy crude oils: Castilla, Rubiales and Nare-Jazmin[J]. Prepr Pap Am Chem Soc, Div Fuel Chem, 2004, 49(2): 554-556.
-
[9]
[9] Del BIANCO A, PANARITI N, PRANDINI B. Thermal cracking of petroleum residues: 2 Hydrogen-donor solvent addition[J]. Fuel, 1993, 72(1): 81-85.
-
[10]
[10] 邓文安, 刘东, 周家顺. 加供氢剂的减压渣油减黏裂化工艺的开发[J]. 炼油技术与工程, 2007, 36(12): 7-10. (DENG Wen-an, LIU Dong, ZHOU Jia-shun. Development of vacuum residue visbreaking process with hydrogen donors[J]. Petroleum Refinery Engineering, 2007, 36(12): 7-10.)
-
[11]
[11] VASILAKOS N P, AUSTGEN D M. Hydrogen-donor solvents in biomass liquefaction[J]. Ind Eng Chem Process Des Dev, 1985, 24(2): 304-311.
-
[12]
[12] 王治卿, 王宗贤. 减压渣油供氢剂减黏裂化研究[J]. 燃料化学学报, 2007, 34(6): 745-748. (WANG Zhi-qing, WANG Zong-xian. Roles of hydrogen donor in visbreaking of vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2007, 34(6): 745-748.)
-
[13]
[13] LANGER A W, STEWART J, THOMPSON C E. Hydrogen donor diluent visbreaking of residua[J]. Ind Eng Chem Process Des Dev, 1962, 1(4): 309-312.
-
[14]
[14] 刘东, 邓文安. 辽河减压渣油供氢减黏裂化反应性能研究[J]. 石油大学学报(自然科学版), 2002, 26(2): 86-87. (LIU-Dong, DENG Wen-an. Study on visbreaking reaction of Liaohe vacuum residue with hydrogen donor[J]. Journal of the University of Petroleum(Edition of Natural Science), 2002, 26(2): 86-87.)
-
[15]
[15] 郭爱军, 王宗贤, 张会军. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2008, 35(6): 667-672. (GUO Ai-jun, WANG Zong-xian, Zhang Hui-jun. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors [J]. Journal of Fuel Chemistry and Technology, 2008, 35(6): 667-672.)
-
[16]
[16] 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. (XU Chun-ming, YANG Chao-he. Petroleum refining engineering [M]. 4th ed. Beijing: Petroleum Industry Press, 2009.)
-
[17]
[17] 梁文杰. 石油化学[M]. 东营: 中国石油大学出版社, 2009. (LIANG Wen-jie. Petroleum chemistry[M]. Dongying: China University of Petroleum Press, 2009.)
-
[18]
[18] SH/T 0266-92(98), 石油沥青质含量测定法[S]. (SH/T 0266-92(98), Standard test method for petroleum asphaltene content[S].)
-
[19]
[19] ASTM D4740-04(2009), Standard test method for cleanliness and compatibility of residual fuels by spot test [S].
-
[20]
[20] 柴志杰. 重质塔河原油的减黏裂化工艺 [J]. 中外能源, 2006, 11(3): 50-53. (CHAI Zhi-jie. Shallow splitting unit product weight crude oil for Tahe[J]. Sino-Global Energy, 2006, 11(3): 50-53.)
-
[21]
[21] 迟春红, 张道光, 严易明. 浅析减黏裂化工艺应用与技术发展[J]. 石油化工设计, 2010, 27(2): 25-27. (CHI Chun-hong, ZHANG Dao-guang, YAN Yi-ming. Application and development of visbreaking technology[J]. Petrochemical Design, 2010, 27(2): 25-27.)
-
[22]
[22] 亓玉台, 谢传欣. 减黏裂化工艺技术及其进展[J]. 炼油设计, 2000, 30(10): 1-6. (QI Yu-tai, XIE Chuan-xin. Progress in visbreaking technology[J]. Petroleum Refinery Engineering, 2000, 30(10): 1-6.)
-
[23]
[23] ARGILLIER J F, BARRE L, BRUCY F.Influence of asphaltenes content and dilution on heavy oil rheology [C]//SPE International Thermal Operations and Heavy Oil Symposium. Venezuela: Society of Petroleum Engineers Inc, 2001: 1-8.
-
[24]
[24] 郭爱军, 王宗贤. 饱和烃促进渣油热反应初期生焦的考察[J]. 燃料化学学报, 2001, 29(5): 408-412. (GUO Ai-jun, WANG Zong-xian. Promoting effect of saturate hydrocarbons in initial coke formation from petroleum residua under thermal cracking [J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 408-412.)
-
[25]
[25] 李生华, 刘晨光. 渣油热反应中第二液相的形成机制[J]. 燃料化学学报, 1998, 26(5): 423-430. (LI Sheng-hua, LIU Chen-guang. Formation mechanisms of second liquid phases in thermal reaction systems of vacuum residua [J]. Journal of Fuel Chemistry and Technology, 1998, 26(5): 423-430.)
-
[26]
[26] 李生华, 刘晨光. 渣油热反应体系中第二液相与焦的关系 [J]. 燃料化学学报, 1998, 26(1): 1-6. (LI Sheng-hua, LIU Chen-guang. Relations between second liquid phases and coke in thermal reaction systems of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 1-6.)
-
[1]
-
-
-
[1]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[2]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[3]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[5]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[6]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[7]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[10]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[11]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[12]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[13]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[14]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[15]
Qiang Wu , Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[18]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[19]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[20]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1246)
- HTML views(120)