Citation: Ramin Ghorbani-Vaghei, Lotfi Shiri, Arash Ghorbani-Choghamarani. An efficient, rapid and facile procedure for conversion of aldoximes to nitriles using triphenylphosphine and N-halo sulfonamides[J]. Chinese Chemical Letters, ;2013, 24(12): 1123-1126. shu

An efficient, rapid and facile procedure for conversion of aldoximes to nitriles using triphenylphosphine and N-halo sulfonamides

  • Corresponding author: Ramin Ghorbani-Vaghei, 
  • Received Date: 28 March 2013
    Available Online: 20 June 2013

  • N,N,N',N'-Tetrabromobenzene-1,3-disulfonamide (TBBDA)/triphenylphosphine and N,N,N',N'-tetrachlorobenzene- 1,3-disulfonamide (TCBDA)/triphenylphosphine have been introduced as highly efficient systems for the versatile conversion of aldoxime derivatives into nitriles. The process reported here is operationally simple and reactions have been mildly performed in dichloromethane at room temperature.
  • 加载中
    1. [1]

      [1] (a) K. Friedrick, K. Wallensfels, The Chemistry of the Cyano Group, Wiley, New York, 1970p. 67;(b) M. North, A.R. Katritzky, O. Meth-Cohn, C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon, Oxford, 1995;

    2. [2]

      (c) S.I. Murahashi, Synthesis from nitriles with retention of the cyano group, Sci. Synth. Georg Thieme 19 (2004) 345-402;

    3. [3]

      (d) S.J. Collier, P. Langer, Application of nitriles as reagents for organic synthesis with loss of the nitrile functionality, Sci. Synth. Georg Thieme 19 (2004) 403-425.

    4. [4]

      [2] S. Patai, Z. Rappaport, A.J. Fatiadi, Preparation and Synthetic Applications of Cyano Compounds, Wiley, New York, 1983.

    5. [5]

      [3] (a) G.P. Ellis, T.M. Romney-Alexande, Cyanation of aromatic halides, Chem. Rev. 87 (1987) 779-794;

    6. [6]

      (b) R. Raja, R.D. Adams, D.A. Blom, et al., New catalytic liquid-phase ammoxidation approach to the preparation of niacin (vitamin B3), Langmuir 25 (2009) 7200-7204.

    7. [7]

      [4] (a) H.S. Kim, S.H. Kim, J.N. Kim, Highly efficient Pd-catalyzed synthesis of nitriles from aldoximes, Tetrahedron Lett. 50 (2009) 1717-1719;

    8. [8]

      (b) M.K. Singh, M.K. Lakshman, A simple synthesis of nitriles from aldoximes, J. Org. Chem. 74 (2009) 3079-3084;

    9. [9]

      (c) M. Gucma, W.M. Golebiewski, Convenient conversion of aldoximes into nitriles with N-chlorosuccinimide and pyridine, Synthesis (2008) 1997-1999;

    10. [10]

      (d) P. Supsana, T. Liaskopoulos, P.G. Tsoungas, G. Varvounis, DMF-catalysed thermal dehydration of aldoximes: a convenient access to functionalized aliphatic and aromatic nitriles, Synlett (2007) 2671-2674;

    11. [11]

      (e) K. Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno, A tungsten-tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles, Angew. Chem. Int. Ed. 46 (2007) 3922-3925;

    12. [12]

      (f) A.R. Sardarian, Z. Shahsavari-Fard, H.R. Shahsavari, Z. Ebrahimi, Efficient Beckmann rearrangement and dehydration of oximes via phosphonate intermediates, Tetrahedron Lett. 48 (2007) 2639-2643;

    13. [13]

      (g) J.A. Campbell, G. McDougald, H. McNab, L.V.C. Rees, R.G. Tyas, Laboratory-scale synthesis of nitriles by catalysed dehydration of amides and oximes under flash vacuum pyrolysis (FVP) conditions, Synthesis (2007) 3179-3184;

    14. [14]

      (h) M.H. Sarvari, ZnO/CH3COCl: a new and highly efficient catalyst for dehydration of aldoximes into nitriles under solvent-free condition, Synthesis (2005) 787-790;

    15. [15]

      (i) D. Li, F. Shi, S. Guo, Y. Deng, Highly efficient Beckmann rearrangement and dehydration of oximes, Tetrahedron Lett. 46 (2005) 671-674;

    16. [16]

      (j) T.A. Khan, S. Peruncheralathan, H. Ila, H. Junjappa, S,S-Dimethyl dithiocarbonate: a useful reagent for efficient conversion of aldoximes to nitriles, Synlett (2004) 2019-2021;

    17. [17]

      (k) Z. Jie, V. Rammoorty, B. Fischer, Diethyl chlorophosphite: a versatile reagent, J. Org. Chem. 67 (2002) 711-719;

    18. [18]

      (l) A. Heqedues, A. Cwik, Z. Hell, et al., Microwave-assisted conversion of oximes into nitriles in the presence of a zeolite, Green Chem. 4 (2002) 618-620;

    19. [19]

      (m) M. Boruah, D. Konwar, AlCl3·6H2O/KI/H2O/CH3CN: a new alternate system for dehydration of oximes and amides in hydrated media, J. Org. Chem. 67 (2002) 7138-7139;

    20. [20]

      (n) M.M. Heravi, S. Sadjadi, R. Hekmatshoar, H.A. Oskooie, F.F. Bamoharram, Dehydration of oximes to nitriles catalyzed by a green heteropolyacid catalyst: Preyssler's anion, [NaP5W30O110]14-, Chin. J. Chem. 27 (2009) 607-609;

    21. [21]

      (o) B. Jose, M.S. Sulatha, P.M. Pillai, S. Prathapan, A new method for the generation of nitriles from aldoximes, Synth. Commun. 30 (2000) 1509-1514;

    22. [22]

      (p) S.S. Chaudhari, K.G. Akananchi, Thionyl chloride-benzotriazole: an efficient system for transformation of aldoximes to nitriles, Synth. Commun. 29 (1999) 1741-1745;

    23. [23]

      (q) N. Iranpoor, H. Firouzabadi, G. Aghapour, A rapid and facile conversion of primary amides and aldoximes to nitriles and ketoximes to amides with triphenylphosphine and N-chlorosuccinimide, Synth. Commun. 32 (2002) 2535-2541;

    24. [24]

      (r) D. Sahs, A. Saha, B.C. Ranu, Ionic liquid-promoted dehydration of aldoximes: a convenient access to aromatic, heteroaromatic and aliphatic nitriles, Tetrahedron Lett. 50 (2009) 6088-6091;

    25. [25]

      (s) H. Veisi, Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia, Synthesis (2010) 2631-2635;

    26. [26]

      (t) R.G. Kalkhambkar, S.D. Bunge, K.K. Laali, Reaction of triflyl-imidazole with aldoximes: facile synthesis of nitriles and formation of novel aldoxime-bis(Ntriflyl)- imidazole adducts, Tetrahedron Lett. 52 (2011) 5184-5187; (u) R.M. Denton, J. An, P. Lindovska, W. Lewis, Phosphonium salt-catalysed synthesis of nitriles from in situ activated oximes, Tetrahedron Lett. 68 (2012) 2899- 2905; (v) R. Rezaei, M. Karami, Microwave promoted rapid dehydration of aldoximes to nitriles using melamine-formaldehyde resin supported sulphuric acid in dry media, Chin. Chem. Lett. 22 (2011) 815-818.

    27. [27]

      [5] (a) R. Ghorbani-Vaghei, H. Shahbazi, H. Veisi, Mild bromination of unreactive aromatic compounds, Tetrahedron Lett. 53 (2012) 2325-2327;

    28. [28]

      (b) R. Ghorbani-Vaghei, S. Hajinazari, M. Engashte, Poly(N,N'-dibromo-N-ethylbenzene- 1,3-disulfonamide), N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as new reagents for conjugate addition of indole, pyrrole with α,β-unsaturated ketones, J. Iran. Chem. Soc. 9 (2012) 655-660;

    29. [29]

      (c) R. Ghorbani-Vaghei, R. Karimi-Nami, Z. Toghraei-Semiromi, M. Amiri, M. Ghavidel, One-pot synthesis of aliphatic and aromatic 2H-indazolo[2,1-b]phthalazine- triones catalyzed by N-halosulfonamides under solvent-free conditions, Tetrahedron 67 (2011) 1930-1937;

    30. [30]

      (d) H. Veisi, R. Ghorbani-Vaghei, J. Mahmoodi, Poly(N,N'-dichloro-N-ethyl-benzene- 1,3-disulfonamide) and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide as efficient reagents to direct oxidative conversion of thiols and disulfide to sulfonyl chlorides, Bull. Korean Chem. Soc. 32 (2011) 3692-3695;

    31. [31]

      (e) R. Ghorbani-Vaghei, S. Akbari-Dadamahaleh, M. Amiri, Poly(N-bromo-N-ethylbenzene- 1,3-disulfonamide), N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as new efficient reagents for conversion of alcohols to THP ethers and aldehydes to oxazoline compounds, J. Iran. Chem. Soc. 7 (2010) 301-307;

    32. [32]

      (f) R. Ghorbani-Vaghei, H. Veisi, The application of poly(N,N'-dibromo-N-ethylbenzene- 1,3-disulfonamide) and N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as catalysts for one-pot synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles and 1,5-benzodiazepines, and new reagents for synthesis of benzimidazoles, Mol. Divers. 14 (2010) 249-256;

    33. [33]

      (g) R. Ghorbani-Vaghei, M. Amiri, N. Moshfeghifar, H. Veisi, S. Akbari-Dadamahaleh, Poly(N,N'-dibromo-N-ethyl-benzene-1,3-disulfonamide) and N,N,N',N'-tetrabromobenzene- 1,3-disulfonamide as effective catalysts for conversion of aldehydes to 1,1-diacetates and acetals, J. Iran. Chem. Soc. 6 (2009) 754-760;

    34. [34]

      (h) R. Ghorbani-Vaghei, H. Veisi, M. Amiri, Poly(N,N'-dichloro-N-ethyl-benzene- 1,3-disulfonamide), N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide, poly(N,N'- dibromo-N-ethyl-benzene-1,3-disulfonamide), and N,N,N',N'-tetrabromobenzene- 1,3-disulfonamide catalyzed formylation of amines and alcohols using ethyl formate under microwave irradiation, J. Iran. Chem. Soc. 6 (2009) 761-768;

    35. [35]

      (i) R. Ghorbani-Vaghei, M. Chegini, H. Veisi, M. Karimi-Tabar, Poly(N,N'-dibromo-Nethyl- benzene-1,3-disulfonamide), N,N,N',N'-tetrabromobenzene-1,3-disulfonamide and novel poly(N,N,N'-dibromo-N-phenylbenzene-1,3-disulfonamide) as powerful reagents for benzylicbromination, Tetrahedron Lett. 50 (2009) 1861-1865;

    36. [36]

      (j) R. Ghorbani-Vaghei, S. Akbari-Dadamahaleh, Poly(N-bromo-N-ethylbenzene- 1,3-disulfonamide) and N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as efficient reagents for synthesis of quinolines, Tetrahedron Lett. 50 (2009) 1055-1058;

    37. [37]

      (k) R. Ghorbani-Vaghei, H. Veisi, Poly(N,N,N'-dichloro-N-ethylbenzene-1,3-disulfonamide) andN,N,N',N'-tetrachlorobenzene-1,3-disulfonamide as novel reagents for the synthesis of N-chloroamines, nitriles and aldehydes, Synthesis (2009) 945-950;

    38. [38]

      (l) R. Ghorbani-Vaghei, M.A. Zolfigol, M. Amiri, H. Veisi, N,N,N',N'-Tetrabromobenzene- 1,3-disulfonamide and poly(N-bromo-N-ethyl-benzene-1,3-disulfonamide) as efficient catalysts for the methoxymethylation of alcohols under solvent-free conditions, J. Chin. Chem. Soc. 55 (2008) 632-635;

    39. [39]

      (m) R.Ghorbani-Vaghei, H. Veisi,M.Amiri,Microwave-assisted oxidationof alcohols with N,N,N',N'-tetrabromobenzene-1,3-disulfonamide and poly(n-bromobenzene- 1,3-disulfonamide) under solvent-free conditions, J. Chin. Chem. Soc. 54 (2007) 1257-1260;

    40. [40]

      (n) R. Ghorbani-Vaghei, M.A. Zolfigol, M. Chegeny, H. Veisi, Poly(N-bromobenzene- 1,3-disulfonamide) and N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as novel catalytic reagents for silylation of alcohols, phenols, and thiols using hexamethyldisilazane, Tetrahedron Lett. 47 (2006) 4505-4508;

    41. [41]

      (o) R. Ghorbani-Vaghei, H. Jalili, Mild and regioselective bromination of aromatic compounds with N,N,N',N'-tetrabromobenzene-1,3-disulfonamide and poly(N-bromobenzene- 1,3-disulfonylamide), Synthesis (2005) 1099-1102;

    42. [42]

      (p) R. Ghorbani-Vaghei, E. Shahbazee, Facile and mild deprotection of semicarbazones under solvent-free conditions with N,N,N',N'-tetrabromo-benzene-1,3-disulfonylamide, J. Braz. Chem. Soc. 16 (2005) 647-649;

    43. [43]

      (q) R. Ghorbani-Vaghei, E. Shahbazee, H. Veisi, N,N'-Diiodo-N,N'-1,2-ethanediylbis( p-toluenesulfonamide) as a reagent for conversion of aldehydes to methyl esters, Mendeleev Commun. 15 (2005) 207-208;

    44. [44]

      (r) R. Ghorbani-Vaghei, H. Veisi, Poly(N,N,N'-dichloro-N-ethyl-benzene-1,3-disulfonamide) and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide as novel catalytic reagents for synthesis of bis-indolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl) and tetra(bis-indolyl) methanes under solid-state, solvent and water conditions, J. Braz. Chem. Soc. 21 (2010) 193-201;

    45. [45]

      (s) R. Ghorbani-Vaghei, A. Khazaei, The application of N,N'-dibromo-N,N'-1, 2- ethanediylbis-(p-toluenesulphonamide) as a powerful reagent for the oxidation of primary and secondary alcohols to aldehydes and ketones, Tetrahedron Lett. 44 (2003) 7525-7527.

    46. [46]

      [6] D.R. Kirklin, E.S. Domalski, Enthalpies of combustion of triphenylphosphine and triphenylphosphine oxide, J. Chem. Thermodyn. (1988) 743-754.

    47. [47]

      [7] (a) D.S. Bhalerao, U.S. Mahajan, K.H. Chaudhari, K.G. Akamanchi, o-Iodoxybenzoic acid- and tetraethylammonium bromide-mediated oxidative transformation of primary carboxamides to one-carbon dehomologated nitriles, J. Org. Chem. 72 (2007) 662-665;

    48. [48]

      (b) Online Data from Product Catalog, Sigma-Aldrich, 2009 http://www.sigmaaldrich. com/technical-service-home/product-catalog.html;

    49. [49]

      (c) S. Talukdar, J.L. Hsu, T.C. Chou, J.M. Fang, Direct transformation of aldehydes to nitriles using iodine in ammonia water, Tetrahedron Lett. 42 (2001) 1103-1105;

    50. [50]

      (d) D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, FL, 2006;

    51. [51]

      (e) H. Sharghi, M.H. Sarvari, Graphite as an efficient catalyst for one-step conversion of aldehydes into nitriles in dry media, Synthesis (2003) 243-246;

    52. [52]

      (f) S. Ushijima, K. Moriyama, H. Togo, Practical one-pot transformation of electronrich aromatics into aromatic nitriles with molecular iodine and aq NH3 using Vilsmeier-Haack reaction, Tetrahedron 68 (2012) 4588-4595;

    53. [53]

      (g) P. Capdevielle, A. Lavigne, M. Maumy, Improved and extended one-step conversion of primary amines into nitriles by copper-catalyzed oxidation, Synthesis (1989) 453-454;

    54. [54]

      (h) H.M. Sampath Kumar, P.K. Mohanty, M. Suresh Kumar, J.S. Yadav, Microwave promoted rapid dehydration of aldoximes to nitriles on a solid support, Synth. Commun. 27 (1997) 1327-1333;

    55. [55]

      (i) S. Iida, H. Togo, Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3, Tetrahedron 63 (2007) 8274-8281;

    56. [56]

      (j) B.P. Bandgar, S.S. Makone, Organic reactions in water: transformation of aldehydes to nitriles using NBS under mild conditions, Synth. Commun. 36 (2006) 1347-1352;

    57. [57]

      (k) Z. Rappaport, CRC Handbook of Tables for Organic Compound Identification, 3rd ed., The Chemical Rubber, USA, 1967.

  • 加载中
    1. [1]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    2. [2]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    3. [3]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    4. [4]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    9. [9]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    10. [10]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    11. [11]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    12. [12]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    13. [13]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    18. [18]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    19. [19]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(847)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return