Citation: Jian He, Dong Chen, Xu-Meng Fan, Li-Wei Wang, Jian-Yuan Deng, Wan-Tai Yang. Reactive poly(divinyl benzene-co-maleic anhydride) nanoparticles: Preparation and characterization[J]. Chinese Chemical Letters, ;2013, 24(11): 970-974. shu

Reactive poly(divinyl benzene-co-maleic anhydride) nanoparticles: Preparation and characterization

  • Corresponding author: Wan-Tai Yang, 
  • Received Date: 17 June 2013
    Available Online: 9 July 2013

  • Polymeric nanoparticles (NPs) have drawn great interest in the past few years due to their potential applications in the fields of biomedical and optical technologies. However, it is still a challenge to prepare functional polymeric NPs, especially for particle diameters smaller than 50 nm. In this work, we demonstrate a one-pot method to fabricate reactive poly(divinyl benzene-co-maleic anhydride) NPs (PDVBMAH NPs) through a self-stable precipitation polymerization process. The size and morphology of these PDVBMAH NPs were characterized in detail by scanning electronic microscopy, and their chemical structure was determined by IR. The results showed that these NPs were highly cross-linked and their diameter was about 30 nm with narrow distribution. Additionally, the DVB and MAH endow the NPs with reactive surface anhydride and pendant vinyl groups, and these particles could be further functionalized through reaction of these groups. A plausible pathway was proposed for the formation of PDVBMAH NPs.
  • 加载中
    1. [1]

      [1] R. Birringer, H. Gleiter, H.P. Klein, et al., Nanocrystalline materials an approach to a novel solid structure with gas-like disorder, Phys. Lett. A 102 (1984) 365-369.

    2. [2]

      [2] (a) S.I. Stupp, V. LeBonoheur, K. Walker, et al., Supramolecular materials: selforganized nanostructures, Science 276 (1997) 384-389;

    3. [3]

      (b) J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and size-control parameters, Prog. Polym. Sci. 36 (2011) 887-913.

    4. [4]

      [3] J. Pecher, S. Mecking, Nanoparticles of conjugated polymers, Chem. Rev. 110 (2010) 6260-6279.

    5. [5]

      [4] M.L. Gou, X.L. Zheng, K. Men, et al., Poly(e-caprolactone)/poly(ethylene glycol)/poly(e-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery, J. Phys. Chem. B 113 (2009) 12928-12933.

    6. [6]

      [5] F. Bally, D.K. Garg, C.A. Serra, et al., Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation, Polymer 53 (2012) 5045-5051.

    7. [7]

      [6] A.W. Pan, B.B. Wu, J.M. Wu, Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein, Chin. Chem. Lett. 20 (2009) 79-83.

    8. [8]

      [7] R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2011) 2373-2433.

    9. [9]

      [8] X.J. Xu, L.M. Gan, Recent advances in the synthesis of nanoparticles of polymer latexes with high polymer-to-surfactant ratios by microemulsion polymerization, Curr. Opin. Colloid Interface Sci. 10 (2005) 239-244.

    10. [10]

      [9] W.M. Zhang, J. Gao, C. Wu, Microwave preparation of narrowly distributed surfactant-free stable polystyrene nanospheres, Macromolecules 30 (1997) 6388-6390.

    11. [11]

      [10] M. Grasselli, E. Smolko, P. Hargittai, et al., From microspheres to monoliths: synthesis of porous supports with tailored properties by radiation polymerization, Nucl. Instrum. Meth. Phys. Res. B 185 (2001) 254-261.

    12. [12]

      [11] M. Ogawa, S. Nitahara, H. Aoki, et al., Fluorinated polymer nanoparticles as a novel 19F MRI contrast agent prepared by dendrimer-initiated living radical polymerization, Macromol. Chem. Phys. 211 (2010) 1369-1376.

    13. [13]

      [12] R.H. Fernando, Nanocomposite and nanostructured coatings: Recent advancements, in: Nanotechnol. Appl. Coat., ACS Symp Ser., American Chemical Society, vol. 1008, Washington, DC, (2009), pp. 2-21.

    14. [14]

      [13] J.S. Downey, R.S. Frank, W.H. Li, et al., Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization, Macromolecules 32 (1999) 2838-2844.

    15. [15]

      [14] R.S. Frank, J.S. Downey, K. Yu, et al., Poly(divinylbenzene-alt-maleic anhydride) microgels: intermediates to microspheres and macrogels in cross-linking copolymerization, Macromolecules 35 (2002) 2728-2735.

    16. [16]

      [15] R. Somoghi, D. Donescu, M. Ghiurea, et al., Copolymerization of DVB with MA in non-aqueous dispersion, J. Optoelectron. Adv. Mater. 10 (2008) 1457-1462.

    17. [17]

      [16] A. Gelir, D.K. Aktas, I. Cianga, et al., Studying the sol-gel transition of styrene-divinyl benzene crosslinking co-polymerization via excimer forming dye molecules, Polymer 47 (2006) 5843-5851.

    18. [18]

      [17] Q. Yan, Y.W. Bai, Z. Meng, et al., Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres, J. Phys. Chem. B 112 (2008) 6914-6922.

    19. [19]

      [18] G.L. Hao, Z.J. Liu, W.T. Yang, et al., The nucleation and particle growth mechanisms of monodisperse microspheres of PSMA in self-stable precipitation polymerization, J. Beijing Univ. Chem. Technol. 37 (2010) 98-102.

    20. [20]

      [19] C.M. Xing, W.T. Yang, A novel, facile method for the preparation of uniform, reactive maleic anhydride/vinyl acetate copolymer micro-and nanospheres, Macromol. Rapid Commun. 25 (2004) 1568-1574.

  • 加载中
    1. [1]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    4. [4]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    5. [5]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    6. [6]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    7. [7]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    8. [8]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    9. [9]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    10. [10]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    11. [11]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    12. [12]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    13. [13]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    14. [14]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    15. [15]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    16. [16]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    17. [17]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    18. [18]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    19. [19]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    20. [20]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

Metrics
  • PDF Downloads(0)
  • Abstract views(738)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return