Citation:
Jian He, Dong Chen, Xu-Meng Fan, Li-Wei Wang, Jian-Yuan Deng, Wan-Tai Yang. Reactive poly(divinyl benzene-co-maleic anhydride) nanoparticles: Preparation and characterization[J]. Chinese Chemical Letters,
;2013, 24(11): 970-974.
-
Polymeric nanoparticles (NPs) have drawn great interest in the past few years due to their potential applications in the fields of biomedical and optical technologies. However, it is still a challenge to prepare functional polymeric NPs, especially for particle diameters smaller than 50 nm. In this work, we demonstrate a one-pot method to fabricate reactive poly(divinyl benzene-co-maleic anhydride) NPs (PDVBMAH NPs) through a self-stable precipitation polymerization process. The size and morphology of these PDVBMAH NPs were characterized in detail by scanning electronic microscopy, and their chemical structure was determined by IR. The results showed that these NPs were highly cross-linked and their diameter was about 30 nm with narrow distribution. Additionally, the DVB and MAH endow the NPs with reactive surface anhydride and pendant vinyl groups, and these particles could be further functionalized through reaction of these groups. A plausible pathway was proposed for the formation of PDVBMAH NPs.
-
-
-
[1]
[1] R. Birringer, H. Gleiter, H.P. Klein, et al., Nanocrystalline materials an approach to a novel solid structure with gas-like disorder, Phys. Lett. A 102 (1984) 365-369.
-
[2]
[2] (a) S.I. Stupp, V. LeBonoheur, K. Walker, et al., Supramolecular materials: selforganized nanostructures, Science 276 (1997) 384-389;
-
[3]
(b) J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and size-control parameters, Prog. Polym. Sci. 36 (2011) 887-913.
-
[4]
[3] J. Pecher, S. Mecking, Nanoparticles of conjugated polymers, Chem. Rev. 110 (2010) 6260-6279.
-
[5]
[4] M.L. Gou, X.L. Zheng, K. Men, et al., Poly(e-caprolactone)/poly(ethylene glycol)/poly(e-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery, J. Phys. Chem. B 113 (2009) 12928-12933.
-
[6]
[5] F. Bally, D.K. Garg, C.A. Serra, et al., Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation, Polymer 53 (2012) 5045-5051.
-
[7]
[6] A.W. Pan, B.B. Wu, J.M. Wu, Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein, Chin. Chem. Lett. 20 (2009) 79-83.
-
[8]
[7] R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2011) 2373-2433.
-
[9]
[8] X.J. Xu, L.M. Gan, Recent advances in the synthesis of nanoparticles of polymer latexes with high polymer-to-surfactant ratios by microemulsion polymerization, Curr. Opin. Colloid Interface Sci. 10 (2005) 239-244.
-
[10]
[9] W.M. Zhang, J. Gao, C. Wu, Microwave preparation of narrowly distributed surfactant-free stable polystyrene nanospheres, Macromolecules 30 (1997) 6388-6390.
-
[11]
[10] M. Grasselli, E. Smolko, P. Hargittai, et al., From microspheres to monoliths: synthesis of porous supports with tailored properties by radiation polymerization, Nucl. Instrum. Meth. Phys. Res. B 185 (2001) 254-261.
-
[12]
[11] M. Ogawa, S. Nitahara, H. Aoki, et al., Fluorinated polymer nanoparticles as a novel 19F MRI contrast agent prepared by dendrimer-initiated living radical polymerization, Macromol. Chem. Phys. 211 (2010) 1369-1376.
-
[13]
[12] R.H. Fernando, Nanocomposite and nanostructured coatings: Recent advancements, in: Nanotechnol. Appl. Coat., ACS Symp Ser., American Chemical Society, vol. 1008, Washington, DC, (2009), pp. 2-21.
-
[14]
[13] J.S. Downey, R.S. Frank, W.H. Li, et al., Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization, Macromolecules 32 (1999) 2838-2844.
-
[15]
[14] R.S. Frank, J.S. Downey, K. Yu, et al., Poly(divinylbenzene-alt-maleic anhydride) microgels: intermediates to microspheres and macrogels in cross-linking copolymerization, Macromolecules 35 (2002) 2728-2735.
-
[16]
[15] R. Somoghi, D. Donescu, M. Ghiurea, et al., Copolymerization of DVB with MA in non-aqueous dispersion, J. Optoelectron. Adv. Mater. 10 (2008) 1457-1462.
-
[17]
[16] A. Gelir, D.K. Aktas, I. Cianga, et al., Studying the sol-gel transition of styrene-divinyl benzene crosslinking co-polymerization via excimer forming dye molecules, Polymer 47 (2006) 5843-5851.
-
[18]
[17] Q. Yan, Y.W. Bai, Z. Meng, et al., Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres, J. Phys. Chem. B 112 (2008) 6914-6922.
-
[19]
[18] G.L. Hao, Z.J. Liu, W.T. Yang, et al., The nucleation and particle growth mechanisms of monodisperse microspheres of PSMA in self-stable precipitation polymerization, J. Beijing Univ. Chem. Technol. 37 (2010) 98-102.
-
[20]
[19] C.M. Xing, W.T. Yang, A novel, facile method for the preparation of uniform, reactive maleic anhydride/vinyl acetate copolymer micro-and nanospheres, Macromol. Rapid Commun. 25 (2004) 1568-1574.
-
[1]
-
-
-
[1]
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
-
[2]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[3]
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
-
[4]
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
-
[5]
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
-
[6]
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
-
[7]
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
-
[8]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[9]
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
-
[10]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[11]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[12]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[13]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[14]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[15]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[16]
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
-
[17]
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
-
[18]
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
-
[19]
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
-
[20]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(738)
- HTML views(5)