Citation: Hong-Fang Zhang, Jian-Bin Zheng, Rui-Xiao Liu. Hemoglobin-glucose oxidase catalyzed polymerization of aniline: Electrochemical study and application[J]. Chinese Chemical Letters, ;2013, 24(10): 934-936. shu

Hemoglobin-glucose oxidase catalyzed polymerization of aniline: Electrochemical study and application

  • Corresponding author: Jian-Bin Zheng, 
  • Received Date: 8 April 2013
    Available Online: 13 May 2013

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 20905061). (No. 20905061)

  • A new method for the formation of electroactive polyaniline (PANI) biocatalyzed by hemoglobin coupled with glucose oxidase in neutral medium on the polystyrene nanospheres (PS) modified glassy carbon electrode, was investigated. The bio-polymerized PANI formed on the PS was confirmed by the obvious increase of the diameter of the particles on the scanning electron microscopy image. The cyclic voltammetric behavior of the PANI was also investigated. PANI produced an oxidative peak at 0.28 V and a reductive peak at 0.23 V. Based on the glucose-dependent bio-polymerization, a new electrochemical protocol for the estimation of glucose was developed. The square wave voltammetric response of PANI deposited on the modified electrode increased linearly with glucose concentration in the range of 0.1-10.0 μmol/L. The efficient performance of hemoglobin-oxidase biocatalyzed polymerization of aniline provides a new concept for the synthesis of nanomaterials, and a general protocol for the development of the biosensors.
  • 加载中
    1. [1]

      [1] P. Román, R. Cruz-Silva, R. Vazquez-Duhalt, Peroxidase-mediated synthesis of water-soluble fully sulfonated polyaniline, Synth. Met. 162 (2012) 794-799.

    2. [2]

      [2] O.I. Wilner, S. Shimron, Y. Weizmann, Z.G. Wang, I. Willner, Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires, Nano Lett. 9 (2009) 2040-2043.

    3. [3]

      [3] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 40 (2007) 1451-1463.

    4. [4]

      [4] S. Guo, S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Anal. Chem. 28 (2009) 96-109.

    5. [5]

      [5] C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors, Bios. Bioelectron. 26 (2011) 2811-2821.

    6. [6]

      [6] E.B. Setterington, E.C. Alocilja, Rapid electrochemical detection of polyanilinelabeled Escherichia coli O157:H7, Biosens. Bioelectron. 26 (2011) 2208-2214.

    7. [7]

      [7] S.K. Arya, A. Dey, S. Bhansali, Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor, Biosens. Bioelectron. 28 (2011) 166-173.

    8. [8]

      [8] J.J. Cai, L.B. Kong, J. Zhang, Y.C. Luo, L. Kang, A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric super capacitor, Chin. Chem. Lett. 21 (2010) 1509-1512.

    9. [9]

      [9] W. Yan, X. Feng, X. Chen, W. Hou, J.J. Zhu, A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material, Biosens. Bioelectron. 23 (2008) 925-931.

    10. [10]

      [10] A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor, Biosens. Bioelectron. 26 (2010) 790-797.

    11. [11]

      [11] H. Zhang, Z. Meng, Q. Wang, J. Zheng, A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles-carbon nanotubes composite film, Sens. Actuators B 158 (2011) 23-27.

    12. [12]

      [12] J. Wu, K.Y. Chumbimuni-Torres, M. Galik, et al., Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode, Anal. Chem. 81 (2009) 10007-10012.

    13. [13]

      [13] Z.P. Chen, Z.F. Peng, Y. Luo, et al., Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement, Biosens. Bioelectron. 23 (2007) 485-491.

    14. [14]

      [14] G. Lai, F. Yan, J. Wu, C. Leng, H. Ju, Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction, Anal. Chem. 83 (2011) 2726-2732.

    15. [15]

      [15] B. Shlyahovsky, E. Katz, Y. Xiao, V. Pavlov, I. Willner, Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles, Small 1 (2005) 213-216.

    16. [16]

      [16] J. Zheng, Y. He, Q. Sheng, H. Zhang, DNA as a linker for biocatalytic deposition of Au nanoparticles on grapheme and its application in glucose detection, J. Mater. Chem. 21 (2011) 12873-12879.

    17. [17]

      [17] Q. Sheng, J. Zheng, Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes: a biosensor design, Biosens. Bioelectron. 24 (2009) 1621-1628.

    18. [18]

      [18] Q. Sheng, J. Wang, J. Zheng, Z. Xu, H. Zhang, Ultrasensitive electrical biosensing of syphilis DNA using target-guided formation of polyaniline based on enzymecatalyzed polymerization, Biosens. Bioelectron. 25 (2010) 2071-2077.

    19. [19]

      [19] Y. He, Q. Sheng, J. Zheng, M. Wang, B. Liu, Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application, Electrochim. Acta 56 (2011) 2471-2476.

    20. [20]

      [20] X. Hu, K. Tang, S.G. Liu, Y.Y. Zhang, G.L. Zou, Hemoglobin-biocatalysts synthesis of a conducting polyaniline, React. Funct. Polym. 65 (2005) 239-248.

    21. [21]

      [21] W. Liu, J. Kumar, S. Tripathy, K.J. Senecal, L.A. Samuelson, Enzymatically synthesized conducting polyaniline, J. Am. Chem. Soc. 121 (1999) 71-78.

    22. [22]

      [22] S. Mu, Nanostructured polyaniline synthesized using interface polymerization and its redox activity in a wide pH range, Synth. Met. 160 (2010) 1931-1937.

    23. [23]

      [23] A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Evaluation of amperometric glucose biosensors based on glucose oxidase encapsulated within enzymatically synthesized polyaniline and polypyrrole, Sens. Actuators B 158 (2011) 278-285.

    24. [24]

      [24] W. Wang, F. Wang, Y. Yao, S. Hu, K.K. Shiu, Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film, Electrochim. Acta 55 (2010) 7055-7060.

    25. [25]

      [25] X. Chen, J. Zhu, Z. Chen, et al., A novel bienzyme glucose biosensor based on threelayer Au-Fe3O4@SiO2 magnetic nanocomposite, Sens. Actuators B 159 (2011) 220-228.

  • 加载中
    1. [1]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    4. [4]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    7. [7]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    8. [8]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    9. [9]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    12. [12]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    17. [17]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return