Citation:
Hong-Fang Zhang, Jian-Bin Zheng, Rui-Xiao Liu. Hemoglobin-glucose oxidase catalyzed polymerization of aniline: Electrochemical study and application[J]. Chinese Chemical Letters,
;2013, 24(10): 934-936.
-
A new method for the formation of electroactive polyaniline (PANI) biocatalyzed by hemoglobin coupled with glucose oxidase in neutral medium on the polystyrene nanospheres (PS) modified glassy carbon electrode, was investigated. The bio-polymerized PANI formed on the PS was confirmed by the obvious increase of the diameter of the particles on the scanning electron microscopy image. The cyclic voltammetric behavior of the PANI was also investigated. PANI produced an oxidative peak at 0.28 V and a reductive peak at 0.23 V. Based on the glucose-dependent bio-polymerization, a new electrochemical protocol for the estimation of glucose was developed. The square wave voltammetric response of PANI deposited on the modified electrode increased linearly with glucose concentration in the range of 0.1-10.0 μmol/L. The efficient performance of hemoglobin-oxidase biocatalyzed polymerization of aniline provides a new concept for the synthesis of nanomaterials, and a general protocol for the development of the biosensors.
-
Keywords:
- Biocatalysis,
- Polyaniline,
- Electrochemical,
- Glucose
-
-
-
[1]
[1] P. Román, R. Cruz-Silva, R. Vazquez-Duhalt, Peroxidase-mediated synthesis of water-soluble fully sulfonated polyaniline, Synth. Met. 162 (2012) 794-799.
-
[2]
[2] O.I. Wilner, S. Shimron, Y. Weizmann, Z.G. Wang, I. Willner, Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires, Nano Lett. 9 (2009) 2040-2043.
-
[3]
[3] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 40 (2007) 1451-1463.
-
[4]
[4] S. Guo, S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Anal. Chem. 28 (2009) 96-109.
-
[5]
[5] C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors, Bios. Bioelectron. 26 (2011) 2811-2821.
-
[6]
[6] E.B. Setterington, E.C. Alocilja, Rapid electrochemical detection of polyanilinelabeled Escherichia coli O157:H7, Biosens. Bioelectron. 26 (2011) 2208-2214.
-
[7]
[7] S.K. Arya, A. Dey, S. Bhansali, Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor, Biosens. Bioelectron. 28 (2011) 166-173.
-
[8]
[8] J.J. Cai, L.B. Kong, J. Zhang, Y.C. Luo, L. Kang, A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric super capacitor, Chin. Chem. Lett. 21 (2010) 1509-1512.
-
[9]
[9] W. Yan, X. Feng, X. Chen, W. Hou, J.J. Zhu, A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material, Biosens. Bioelectron. 23 (2008) 925-931.
-
[10]
[10] A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor, Biosens. Bioelectron. 26 (2010) 790-797.
-
[11]
[11] H. Zhang, Z. Meng, Q. Wang, J. Zheng, A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles-carbon nanotubes composite film, Sens. Actuators B 158 (2011) 23-27.
-
[12]
[12] J. Wu, K.Y. Chumbimuni-Torres, M. Galik, et al., Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode, Anal. Chem. 81 (2009) 10007-10012.
-
[13]
[13] Z.P. Chen, Z.F. Peng, Y. Luo, et al., Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement, Biosens. Bioelectron. 23 (2007) 485-491.
-
[14]
[14] G. Lai, F. Yan, J. Wu, C. Leng, H. Ju, Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction, Anal. Chem. 83 (2011) 2726-2732.
-
[15]
[15] B. Shlyahovsky, E. Katz, Y. Xiao, V. Pavlov, I. Willner, Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles, Small 1 (2005) 213-216.
-
[16]
[16] J. Zheng, Y. He, Q. Sheng, H. Zhang, DNA as a linker for biocatalytic deposition of Au nanoparticles on grapheme and its application in glucose detection, J. Mater. Chem. 21 (2011) 12873-12879.
-
[17]
[17] Q. Sheng, J. Zheng, Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes: a biosensor design, Biosens. Bioelectron. 24 (2009) 1621-1628.
-
[18]
[18] Q. Sheng, J. Wang, J. Zheng, Z. Xu, H. Zhang, Ultrasensitive electrical biosensing of syphilis DNA using target-guided formation of polyaniline based on enzymecatalyzed polymerization, Biosens. Bioelectron. 25 (2010) 2071-2077.
-
[19]
[19] Y. He, Q. Sheng, J. Zheng, M. Wang, B. Liu, Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application, Electrochim. Acta 56 (2011) 2471-2476.
-
[20]
[20] X. Hu, K. Tang, S.G. Liu, Y.Y. Zhang, G.L. Zou, Hemoglobin-biocatalysts synthesis of a conducting polyaniline, React. Funct. Polym. 65 (2005) 239-248.
-
[21]
[21] W. Liu, J. Kumar, S. Tripathy, K.J. Senecal, L.A. Samuelson, Enzymatically synthesized conducting polyaniline, J. Am. Chem. Soc. 121 (1999) 71-78.
-
[22]
[22] S. Mu, Nanostructured polyaniline synthesized using interface polymerization and its redox activity in a wide pH range, Synth. Met. 160 (2010) 1931-1937.
-
[23]
[23] A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Evaluation of amperometric glucose biosensors based on glucose oxidase encapsulated within enzymatically synthesized polyaniline and polypyrrole, Sens. Actuators B 158 (2011) 278-285.
-
[24]
[24] W. Wang, F. Wang, Y. Yao, S. Hu, K.K. Shiu, Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film, Electrochim. Acta 55 (2010) 7055-7060.
-
[25]
[25] X. Chen, J. Zhu, Z. Chen, et al., A novel bienzyme glucose biosensor based on threelayer Au-Fe3O4@SiO2 magnetic nanocomposite, Sens. Actuators B 159 (2011) 220-228.
-
[1]
-
-
-
[1]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[2]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[3]
Cheng Cheng , Nasir Ali , Ji Liu , Juan Qiao , Ming Wang , Li Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812
-
[4]
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
-
[5]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[6]
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
-
[7]
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
-
[8]
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
-
[9]
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
-
[10]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[11]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[12]
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
-
[13]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[14]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[15]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[16]
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
-
[17]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[18]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[19]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[20]
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(765)
- HTML views(22)