Citation: Qian Jiang, Lu-Tao He, Shun-Zhong Luo, Yan-Qiu Yang, Liang Yang, Wen Feng, Li-Hua Yuan. Synthesis of a crescent aromatic oligothioamide and its high selectivity in recognizing copper(Ⅱ) ions[J]. Chinese Chemical Letters, ;2013, 24(10): 881-884. shu

Synthesis of a crescent aromatic oligothioamide and its high selectivity in recognizing copper(Ⅱ) ions

  • Corresponding author: Wen Feng, 
  • Received Date: 1 April 2013
    Available Online: 13 May 2013

    Fund Project: This work was supported by the National Natural Science Foundation (No. 21172158) (No. 21172158) NSAF (No. 11076018) (No. 11076018) the National Fund of China for Fostering Talents in Basic Science (No. J1210004) (No. 2011FZ0048)Open Project of Key Laboratory for Radiation Physics and Technology of Ministry of Education (No. 2010-08). Analytical & Testing Center of Sichuan University is acknowledged for NMR analyses. (No. J1210004)

  • Functionalization of shape-persistent aromatic oligoamides still represents a difficult task nowadays. A crescent aromatic oligothioamide was synthesized by simple thionation of the corresponding oligoamide with the Lawesson's reagent. The results from UV-vis spectra of the molecule upon metal ion complexation demonstrated its higher selectivity in recognizing Cu2+ ions compared to the oligoamide precursor. The stoichiometry of the complex formed between the thioamide and Cu2+ was found to be 1:1 with a binding constant of (4.3±0.9)×104 mol/L.
  • 加载中
    1. [1]

      [1] B. Gong, Crescent oligoamide: from acyclic "macrocycles" to folding nanotubes, Chem. Eur. J. 7 (2001) 4336-4342.

    2. [2]

      [2] H. Jiang, C. Dolain, J.M. Léger, H. Gornitzka, I. Huc, Switching of chiral induction in helical aromatic oligoamides using solid state-solution state equilibrium, J. Am. Chem. Soc. 126 (2004) 1034-1035.

    3. [3]

      [3] Z.T. Li, J.L. Hou, C. Li, et al., Shape-persistent aromatic amide oligoamide: new tools for supramolecular chemistry, Chem. Asian J. 1 (2006) 766-778.

    4. [4]

      [4] H.Y. Hu, W. Xue, Z.Q. Hu, et al., Probing the dynamic environment-associated conformational conversion from secondary to supersecondary structures in oligo(phenanthroline dicarboxamide)s, J. Org. Chem. 74 (2009) 4949-4957.

    5. [5]

      [5] W.Q. Ong, H.Q. Zhao, Z.Y. Du, et al., Computational prediction and experimental verification of pyridine-based helical oligoamides containing four repeating units per helical turn, Chem. Commun. 47 (2011) 6416-6418.

    6. [6]

      [6] I. Saraogi, A.D. Hamilton, Recent advances in the development of aryl-based foldmers, Chem. Soc. Rev. 38 (2009) 1726-1743.

    7. [7]

      [7] J. Zhu, R.D. Parra, H.Q. Zeng, et al., A new class of folding oligomers: crescent oligoamides, J. Am. Chem. Soc. 122 (2000) 4219-4220.

    8. [8]

      [8] L.H. Yuan, W. Feng, K. Yamato, et al., Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers, J. Am. Chem. Soc. 126 (2004) 11120-11121.

    9. [9]

      [9] W. Feng, K. Yamato, L.Q. Yang, et al., Efficient kinetic macrocyclization, J. Am. Chem. Soc. 131 (2009) 2629-2637.

    10. [10]

      [10] Y.A. Yang, W. Feng, J.C. Hu, et al., Strong aggregation and directional assembly of aromatic oligoamide macrocycles, J. Am. Chem. Soc. 133 (2011) 18590-18593.

    11. [11]

      [11] H.L. Fu, Y. Liu, H.Q. Zeng, Shape-persistent H-bonded macrocyclic aromatic pentamers, Chem. Commun. 49 (2013) 4127-4144.

    12. [12]

      [12] W.Q. Ong, H.Q. Zeng, Rapid construction of shape-persistent H-bonded macrocycles via one-pot H-bonding-assisted macrocyclization, J. Incl. Phenom. Macrocycl. Chem. (2013), http://dx.doi.org/10.1007/s10847-012-0243-4.

    13. [13]

      [13] X.S. Yang, L. Chen, Y.A. Yang, et al., Synthesis of crescent aromatic oligoamides with preorganized chelating groups and their extraction towards transition metal ion, J. Hazard. Mater. 217-218 (2012) 171-176.

    14. [14]

      [14] S.L. Zou, L.T. He, J. Zhang, et al., Tunable mesogens based on shape-persistent aromatic oligoamides: from lamellar, columnar, to nematic liquid crystalline phase, Org. Lett. 14 (2012) 3584-3587.

    15. [15]

      [15] D.M. Roundhill, J.Y. Shen, Phase transfer extraction of heavy metals, in: Z. Asfari, V. Bohmer, J. Harrowfield, J. Vicens (Eds.), Calixarenes, Kluwer Academic Publishers, Dordrecht, 2001, pp. 407-420.

    16. [16]

      [16] P. Wang, T. Okamura, H.P. Zhou, et al., Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.

    17. [17]

      [17] M.C. Zhang, Q. Zhou, Y. Zhou, et al., Efficient absorption and desorption of Cu2+ by a novel acid-resistant magnetic weak acid resin, Chin. Chem. Lett. 23 (2012) 1267-1270.

    18. [18]

      [18] N. Shao, Y. Zhang, S.M. Cheung, et al., Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative, Anal. Chem. 77 (2005) 7294-7303.

    19. [19]

      [19] Y. Zhou, F. Wang, Y. Kim, et al., Yoon, Cu2+-selective ratiometric and "off-on" sensor based on the rhodamine derivative bearing pyrene group, Org. Lett. 11 (2009) 4442-4445.

    20. [20]

      [20] M.J. Schwing-Weill, F. Arnaud, M.A. Mckervey, Modulation of the cation complexing properties in the lower rim chemically modified calixarene series, J. Phys. Org. Chem. 5 (1992) 496-501.

    21. [21]

      [21] M. Zhu, M.J. Yuan, X.F. Liu, et al., Visible near-infrared chemosensor for mercury ion, Org. Lett. 10 (2008) 1481-1484.

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    5. [5]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    6. [6]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    7. [7]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    8. [8]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    9. [9]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    10. [10]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    11. [11]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    14. [14]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    15. [15]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    16. [16]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    17. [17]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    20. [20]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

Metrics
  • PDF Downloads(0)
  • Abstract views(839)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return